Skip to main content

Advertisement

Log in

Designing Textile Architectures for High Energy-Efficiency Human Body Sweat- and Cooling-Management

  • Letter
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Thermal management of textiles requires local microclimate control over heat and wet dissipation to create a comfortable thermal-wet environment at the interface of the human body and clothing. Herein, we design a fabric capable of both sweat- and cooling-management using a knitted fabric featuring a bilayer structure consisting of hydrophobic polyethylene terephthalate and hydrophilic cellulose fibers to simultaneously achieve high infrared (IR) transmittance and good thermal-wet comfort. The IR transmission of this cooling textile increased by ~ twofold in the dry state and ~ eightfold in the wet state compared to conventional cotton fabric. When the porosity changes from 10 to 47% with the comparison of conventional cotton fabric and our cooling textile, the heat flux is increased from 74.4 to 152.3 W/cm2. The cooling effect of the cooling fabric is 105% greater than that of commercial cotton fabric, which displays a better thermal management capacity for personal cooling. This bilayer design controls fast moisture transfer from inside out and provides thermal management, demonstrating high impact not only for garments, but also for other systems requiring heat regulation, such as buildings, which could mitigate energy demand and ultimately contribute to the relief of global energy and climate issues.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Law T. The future of thermal comfort in an energy-constrained world. Heidelberg: Springer International Publishing; 2013. p. 1–4.

    Book  Google Scholar 

  2. Hsu P-C, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan S, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science. 2016;353:1019–23.

    Article  Google Scholar 

  3. Yang A, Cai L, Zhang R, Wang J, Hsu P-C, Wang H, Zhou G, Xu J, Cui Y. Thermal management in nanofiber-based face mask. Nano Lett. 2017;17:3506–10.

    Article  Google Scholar 

  4. Mokhtari Yazdi M, Sheikhzadeh M. Personal cooling garments: a review. J Text Inst. 2014;105:1231–50.

    Article  Google Scholar 

  5. Hu J, Meng H, Li G, Ibekwe SI. A review of stimuli responsive polymers for smart textile applications. Smart Mater Struct. 2012;21:053001.

    Article  Google Scholar 

  6. Catrysse PB, Song AY, Fan S. Photonic structure textile design for localized thermal cooling based on a fiber blending scheme. ACS Photonics. 2016;3:2420–6.

    Article  Google Scholar 

  7. Das B, Das A, Kothari V, Fanguiero R, De Araujo M. Effect ́ of fibre diameter and cross-sectional shape on moisture transmission through fabrics. Fibers Polym. 2008;9:225–31.

    Article  Google Scholar 

  8. Kaplan S, Okur A. Thermal comfort performance of sports garments with objective and subjective measurements. Indian J Fibre Text Res. 2012;37:46–54.

    Google Scholar 

  9. Gao C, Kuklane K, Wang F, Holmer I. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air. 2012;22:523–30.

    Article  Google Scholar 

  10. Yang J-H, Kato S, Seok H-T. Measurement of airflow around the human body with wide-cover type personal air conditioning with PIV. Indoor Built Environ. 2009;18:301–12.

    Article  Google Scholar 

  11. Bartkowiak G, Dabrowska A, Marszalek A. Assessment of an active liquid cooling garment intended for use in a hot environment. Appl. Ergon. 2017;58:182–9.

    Article  Google Scholar 

  12. Yanilmaz M, Dirican M, Zhang X. Evaluation of electrospun SiO2/Nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta. 2014;133:501–8.

    Article  Google Scholar 

  13. Li Y, Zhang Z, Li X, Zhang J, Lou H, Shi X, Cheng X, Peng H. A smart, stretchable resistive heater textile. J Mater Chem C. 2017;5:41–6.

    Article  Google Scholar 

  14. Misra V, Bozkurt A, Calhoun B, Jackson T, Jur JS, Lach J, Lee B, Muth J, Oralkan Ö, Öztürk M, et al. Flexible technologies for self-powered wearable health and environmental sensing. Proc IEEE. 2015;103:665–81.

    Article  Google Scholar 

  15. Li Z, Xu Z, Liu Y, Wang R, Gao C. Multifunctional nonwoven fabrics of interfused graphene fibres. Nat Commun. 2016;7:13684.

    Article  Google Scholar 

  16. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310–36.

    Article  Google Scholar 

  17. Chen Z, Zhu L, Raman A, Fan S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat Commun. 2016;7:13729.

    Article  Google Scholar 

  18. Zhai Y, Ma Y, David SN, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355:1062–6.

    Article  Google Scholar 

  19. Speakman J, Chamberlain N. The thermal conductivity of textile materials and fabrics. J Text Inst Trans. 1930;21:T29–56.

    Article  Google Scholar 

  20. Fan J, Luo Z, Li Y. Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int J Heat Mass Transfer. 2000;43:2989–3000.

    Article  Google Scholar 

  21. Zhang X, Yu S, Xu B, Li M, Peng Z, Wang Y, Deng S, Wu X, Wu Z, Ouyang M, Wang Y. Dynamic gating of infrared radiation in a textile. Science. 2019;363:6427.

    Google Scholar 

  22. Fan J, Chen Y. Measurement of clothing thermal insulation and moisture vapour resistance using a novel perspiring fabric thermal manikin. Meas Sci Technol. 2002;13:1115.

    Article  Google Scholar 

  23. Bergman TL, et al. Fundamentals of heat and mass transfer. Hoboken: John Wiley & Sons; 2011.

    Google Scholar 

  24. Handbook, ASHRAE Fundamentals. Thermal comfort. Atlanta: American Society of Heating, Refrigerating and Air-conditioning Engineers (2005).

  25. Antoine MC. Nouvelle Relation Entre les Tensions et les Temperatures. C r held Seanc Acad Sci Paris. 1888;107:681–4.

    Google Scholar 

Download references

Acknowledgements

This project was made possible by financial support from the Delivering Efficient Local Thermal Amenities (DELTA) Program of the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbing Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, K., Yang, Z., Pei, Y. et al. Designing Textile Architectures for High Energy-Efficiency Human Body Sweat- and Cooling-Management. Adv. Fiber Mater. 1, 61–70 (2019). https://doi.org/10.1007/s42765-019-0003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-0003-y

Keywords

Navigation