Skip to main content

Advertisement

Log in

Preparation and Characterization of Paclitaxel/Chitosan Nanosuspensions for Drug Delivery System and Cytotoxicity Evaluation In Vitro

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In this study, we prepared paclitaxel/chitosan (PTX/CS) nanosuspensions (NSs) with different mass ratios of PTX and CS (1.5:2, 2:2, and 2.5:2), for controlled drug delivery purposes. For attachment and dispersion in water medium, a simple ultrasonic disruption technique was employed. The water-dispersed PTX/CS NSs exhibited a rod-shape morphology with an average diameter of 170–210 nm and average length of about 1–10 µm. Transmission electron microscopy, differential scanning calorimetry and X-ray diffraction indicated that the obtained PTX/CS NSs contain a nanocrystalline PTX phase. It was also inferred that presence of CS can promotes the crystalline nature of PTX up to 80%. In addition, efficiency of PTX loading reached over 85% in freeze-dried PTX/CS NSs, showing a slow rate of drug release in vitro for 8 days. The MTT and LDH assessments revealed that PTX/CS NSs significantly inhibit the growth of tumor cells (HeLa), while it is slightly toxic for the normal cells (NIH/3T3). Therefore, PTX/CS NSs is suggested as a potential nanodrug delivery system for cancer therapy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  Google Scholar 

  2. Aungst BJ. Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J Pharm Sci. 2017;106:921–9.

    Article  CAS  Google Scholar 

  3. Ting JM, Tale S, Purchel AA, Jones SD, Widanapathirana L, Tolstyka ZP, Guo L, Guillaudeu SJ, Bates FS, Reineke TM. High-throughput excipient discovery enables oral delivery of poorly soluble pharmaceuticals. ACS Cent Sci. 2016;2:748–55.

    Article  CAS  Google Scholar 

  4. Siepmann J, Siepmann F, Florence AT. Factors influencing oral drug absorption and drug availability. In: Modern pharma, two volume set. 2016. p. 117.

  5. Dening TJ, Rao S, Thomas N, Prestidge CA. Novel nanostructured solid materials for modulating oral drug delivery from solid-state lipid-based drug delivery systems. AAPS J. 2016;8:23–40.

    Article  CAS  Google Scholar 

  6. Salunkhe SS, Bhatia NM, Mali SS, Thorat JD, Ahir AA, Hajare AA. Nanorobots: novel emerging technology in the development of pharmaceuticals for drug delivery applications. J Pharm Pharm Sci. 2014;6:4728–44.

    Google Scholar 

  7. Devadasu VR, Bhardwaj V, Kumar MR. Can controversial nanotechnology promise drug delivery? Chem Rev. 2013;113:1686–735.

    Article  CAS  Google Scholar 

  8. Janousek S, Jirova D, Kejlova K, Dvorakova M. Nanoparticles in health and disease: an overview of nanomaterial hazard, benefit and impact on public health policy-current state and outlook. Front Clin Drug Res Hematol. 2015;2:176.

    Google Scholar 

  9. Wang L, Du J, Zhou Y, Wang Y. Safety of nanosuspensions in drug delivery. Nanomed Nanotechnol. 2017;13:455–69.

    Article  CAS  Google Scholar 

  10. Charitidis CA, Georgiou P, Koklioti MA, Trompeta AF, Markakis V. Manufacturing nanomaterials: from research to industry. Manuf Rev. 2014;1:1–19.

    Google Scholar 

  11. Mane AN, Gilda SS, Ghadge AA, Bhosekar NR, Bhosale RR. Nanosuspension—a novel carrier for lipidic drug transfer. Sch Acad J Pharm. 2014;3:82–8.

    Google Scholar 

  12. Shah DA. To understand the thermodynamic and kinetic properties of nanocrystals using poorly soluble drugs. Long Island University. The Brooklyn Center. 2015.

  13. Gadad AP, Kumar SV, Dandagi PM, Bolmol UB, Pallavi NP. Nanoparticles and their therapeutic applications in pharmacy. Int J Pharm Sci Nanotechnol. 2014;7:2515–6.

    Google Scholar 

  14. Chen L, Wang Y, Zhang J, Hao L, Guo H, Lou H, Zhang D. Bexarotene nanocrystal-oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur J Pharm Biopharm. 2014;87:160–9.

    Article  CAS  Google Scholar 

  15. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, Wang F. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2013;30:307–24.

    Article  CAS  Google Scholar 

  16. Nedra Karunaratne D, Ariyarathna IR, Welideniya D, Siriwardhana A, Gunasekera D, Karunaratne V. Nanotechnological strategies to improve water solubility of commercially available drugs. Curr Nanomed. 2017;7:84–110.

    Google Scholar 

  17. Yadollahi R, Vasilev K, Simovic S. Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater. 2015;1:1–13.

    Article  CAS  Google Scholar 

  18. Dening TJ, Rao S, Thomas N, Prestidge CA. Novel nanostructured solid materials for modulating oral drug delivery from solid-state lipid-based drug delivery systems. AAPS J. 2016;18:23–40.

    Article  CAS  Google Scholar 

  19. Tuomela A, Saarinen J, Strachan CJ, Hirvonen J, Peltonen L. Production, applications and in vivo fate of drug nanocrystals. Drug Deliv Sci Technol. 2016;34:21–31.

    Article  CAS  Google Scholar 

  20. Srivalli KMR, Mishra B. Drug nanocrystals: a way toward scale-up. Saudi Pharm J. 2016;24:386–404.

    Article  Google Scholar 

  21. Parada-Bustamante A, Valencia C, Reuquén P, Díaz P, Rincion-Rodriguez R, A Orihuela P. Role of 2-methoxyestradiol, an endogenous estrogen metabolite, in health and disease. Mini Rev Med Chem. 2015;15:427–38.

    Article  CAS  Google Scholar 

  22. Dranitsaris G, Yu B, Wang L, Sun W, Zhou Y, King J, Kaura S, Zhang A, Yuan P. Abraxane® versus Taxol® for patients with advanced breast cancer: a prospective time and motion analysis from a Chinese health care perspective. J Oncol Pharm Pract. 2016;22:205–11.

    Article  CAS  Google Scholar 

  23. Wang Y, Song J, Chow SF, Chow AH, Zheng Y. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation. Int J Pharm. 2015;494:479–89.

    Article  CAS  Google Scholar 

  24. Peltonen L, Tuomela A, Hirvonen J, Polymeric stabilizers for drug nanocrystals. In: Handbook of polymers for pharmaceutical technologies: bioactive and compatible synthetic/hybrid polymers, vol. 4. 2015. p. 67–87.

  25. Loh ZH, Samanta AK, Heng PWS. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10:255–74.

    Article  Google Scholar 

  26. Xia D, Gan Y, Cui F. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals. Curr Pharm Des. 2014;20:408–35.

    Article  CAS  Google Scholar 

  27. Chaturvedi S, Dave PN. Design process for nanomaterials. J Mater Sci. 2013;48:3605–22.

    Article  CAS  Google Scholar 

  28. Mohyeldin SM, Mehanna MM, Elgindy NA. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity. Int J Nanomed. 2016;11:2209.

    CAS  Google Scholar 

  29. Arunkumar N, Deecaraman M, Rani C. Nanosuspension technology and its applications in drug delivery. Asian J Pharm Sci. 2009;3:168.

    Article  Google Scholar 

  30. Ruecroft G, Hipkiss D, Ly T, Maxted N, Cains PW. Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org Process Res Dev. 2005;9:923–32.

    Article  CAS  Google Scholar 

  31. Li H, Li H, Guo Z, Liu Y. The application of power ultrasound to reaction crystallization. Ultrason Sonochem. 2006;13:359–63.

    Article  CAS  Google Scholar 

  32. Singh S, Dash AK. Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit Rev Ther Drug. 2009;26:333–72.

    Article  CAS  Google Scholar 

  33. Crown J, O’leary M. The taxanes: an update. Lancet. 2000;355:1176–8.

    Article  CAS  Google Scholar 

  34. Wang YS, Jiang Q, Li RS, Liu LL, Zhang QQ, Wang YM, Zhao J. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel. Nanotechnology. 2008;19:1–13.

    Google Scholar 

  35. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, Hawkins MJ. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17:1263–8.

    Article  CAS  Google Scholar 

  36. Henderson IC, Bhatia V. Nab-paclitaxel for breast cancer: a new formulation with an improved safety profile and greater efficacy. Expert Rev Anticancer Ther. 2007;2007(7):919–43.

    Article  Google Scholar 

  37. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235:179–92.

    Article  CAS  Google Scholar 

  38. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21:117–32.

    Article  CAS  Google Scholar 

  39. Takeuchi H, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs. Int J Pharm. 2005;303:160–70.

    Article  CAS  Google Scholar 

  40. Wang F, Yang S, Hua D, Yuan J, Huang C, Gao Q. A novel preparation method of paclitaxcel-loaded folate-modified chitosan microparticles and in vitro evaluation. J Biomater Sci Polym E. 2016;27:276–89.

    Article  CAS  Google Scholar 

  41. Lee E, Lee J, Lee IH, Yu M, Kim H, Chae SY, Jon S. Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem. 2008;51:6442–9.

    Article  CAS  Google Scholar 

  42. Li F, Li J, Wen X, Li J, Wen X, Zhou S, Tong X, Su P, Li H, Shi D. Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: an in vitro study. Mater Sci Eng C. 2009;29:2392–7.

    Article  CAS  Google Scholar 

  43. Liu Y, Wang R, Hou J, Sun B, Zhu B, Qiao Z, Su Y, Zhu X. Paclitaxel/chitosan nanosupensions provide enhanced intravesical bladder cancer therapy with sustained and prolonged delivery of paclitaxel. ACS Appl Bio Mater. 2018;1:1992–2001.

    Article  CAS  Google Scholar 

  44. Tang J, Liu Y, Zhu B, Su Y, Zhu X. Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci. 2017;393:299–308.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grant No: 51373099) State Key Laboratory of open funds of China from Donghua University (LK1411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangshang Zhu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, F., Ding, Y. et al. Preparation and Characterization of Paclitaxel/Chitosan Nanosuspensions for Drug Delivery System and Cytotoxicity Evaluation In Vitro. Adv. Fiber Mater. 1, 152–162 (2019). https://doi.org/10.1007/s42765-019-00012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00012-z

Keywords

Navigation