Skip to main content
Log in

Functionalization-Directed Stabilization of Hydrogen-Bonded Polymer Complex Fibers: Elasticity and Conductivity

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Elastic, repairable and conductive fibers are desirable in the newly emerging field of soft electronic and wearable devices. Here, we design a multifunctional fiber by incorporation of different components to optimize its performance. The combination of the poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) through hydrogen bonding endows the fiber with high elasticity and repairability. Polydopamine (PDA) significantly increases the stability of the fiber, thus the fiber will not dissolve in alkaline solutions and still keep the repairable ability. The fiber shows a reversible swelling-shrinking property as pH values go up and down. Further, the conductive component, carbon nanotube, is adsorbed at the swelling state and then is fastened with fiber shrinking.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boretos JW, Pierce WS. Segmented polyurethane: a new elastomer for biomedical applications. Science. 1967;158:1481.

  2. Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol. 2002;20:602.

  3. Mark JE. Some interesting things about polysiloxanes. Acc Chem Res. 2004;37:946.

  4. Król P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci. 2007;52:915.

  5. Koevoets RA, Versteegen RM, Kooijman H, Spek AL, Sijbesma RP, Meijer EW. Molecular recognition in a thermoplastic elastomer. J Am Chem Soc. 2005;127:2999.

  6. Wietor JL, Sijbesma RP. A self-healing elastomer. Angew Chem Int Ed. 2008;47:8161.

  7. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 2014;8:5154.

  8. Vatankhah-Varnosfaderani M, Daniel WF, Everhart MH, Pandya AA, Liang H, Matyjaszewski K, Sheiko SS. Mimicking biological stress-strain behaviour with synthetic elastomers. Nature. 2017;549:497.

  9. Zhang S, Bellinger AM, Glettig DL, Barman R, Lee YAL, Zhu J, Maitland DJ. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat Mater. 2015;14:1065.

  10. Naciri J, Srinivasan A, Jeon H, Nikolov N, Keller P, Ratna BR. Nematic elastomer fiber actuator. Macromolecules. 2003;36:8499.

  11. Vatankhah-Varnosfaderani M, Keith AN, Cong Y, Liang H, Rosenthal M, Sztucki M, Sheiko SS. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science. 2018;359:1509.

  12. Campbell JB. Synthetic elastomers. Science. 1963;141:329.

  13. Hicks EM, Ultee AJ, Drougas J. Spandex elastic fibers: development of a new type of elastic fiber stimulates further work in the growing field of stretch fabrics. Science. 1965;147:373.

  14. Filippidi E, Cristiani TR, Eisenbach CD, Waite JH, Israelachvili JN, Ahn BK, Valentine MT. Toughening elastomers using mussel-inspired iron-catechol complexes. Science. 2017;358:502.

  15. Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. Toughening elastomers with sacrificial bonds and watching them break. Science. 2014;344:186.

  16. Tang Z, Huang J, Guo B, Zhang L, Liu F. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules. 2016;49:1781.

  17. Kautz H, Van Beek DJM, Sijbesma RP, Meijer EW. Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers. Macromolecules. 2006;39:4265.

  18. Jiang F, Fang C, Zhang J, Wang W, Wang Z. Triblock copolymer elastomers with enhanced mechanical properties synthesized by raft polymerization and subsequent quaternization through incorporation of a comonomer with imidazole groups of about 2.0 mass percentage. Macromolecules. 2017;50:6218.

  19. Chen Y, Kushner AM, Williams GA, Guan Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem. 2012;4:467.

  20. Li J, Wang Z, Wen L, Nie J, Yang S, Xu J, Cheng SZ. Highly elastic fibers made from hydrogen-bonded polymer complex. ACS Macro Lett. 2016;5:814.

  21. Wang Y, Liu X, Li S, Li T, Song Y, Li Z, Sun J. Transparent, healable elastomers with high mechanical strength and elasticity derived from hydrogen-bonded polymer complexes. ACS Appl Mater Interfaces. 2017;9:29120.

  22. Lutkenhaus JL, Hrabak KD, McEnnis K, Hammond PT. Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies. J Am Chem Soc. 2005;127:17228.

  23. Cheng SZ, Zhang A, Barley JS, Chen J, Habenschuss A, Zschack PR. Isothermal thickening and thinning processes in low-molecular-weight poly (ethylene oxide) fractions. 1. From nonintegral-folding to integral-folding chain crystal transitions. Macromolecules. 1991;24:3937.

  24. Cheng SZ, Chen J, Barley JS, Zhang A, Habenschuss A, Zschack PR. Isothermal thickening and thinning processes in low molecular-weight poly (ethylene oxide) fractions crystallized from the melt. 3. Molecular weight dependence. Macromolecules. 1992;25:1453.

  25. Nie J, Wang Z, Li J, Gong Y, Sun J, Yang S. Interface hydrogen-bonded core-shell nanofibers by coaxial electrospinning. Chin J Polym Sci. 2017;35:1001.

  26. Ma S, Qi X, Cao Y, Yang S, Xu J. Hydrogen bond detachment in polymer complexes. Polymer. 2013;54:5382.

  27. Yang S, Ma S, Wang C, Xu J, Zhu M. Polymer complexation by hydrogen bonding at the interface. Aust J Chem. 2014;67:11.

  28. Kharlampieva E, Kozlovskaya V, Sukhishvili SA. Layer-by-layer hydrogen-bonded polymer films: from fundamentals to applications. Adv Mater. 2009;21:3053.

  29. Liu D, Li J, Huang W, Yang S. Progress in polymer complex fibers. Acta Polym Sin. 2018;4:445–55.

  30. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426.

  31. Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C. Catechols as versatile platforms in polymer chemistry. Prog Polym Sci. 2013;38:236.

  32. Ye Q, Zhou F, Liu W. Bioinspired catecholic chemistry for surface modification. Chem Soc Rev. 2011;40:4244.

  33. Sun J, Su C, Zhang X, Yin W, Xu J, Yang S. Reversible swelling-shrinking behavior of hydrogen-bonded free-standing thin film stabilized by catechol reaction. Langmuir. 2015;31:5147.

  34. Sun J, Su C, Zhang X, Li J, Zhang W, Zhao N, Yang S. Responsive complex capsules prepared with polymerization of dopamine, hydrogen-bonding assembly, and catechol dismutation. J Colloid Interface Sci. 2018;513:470.

  35. Bellenger V, Verdu J, Morel E. Effect of structure on glass transition temperature of amine crosslinked epoxies. J Polym Sci Polym Phys. 1987;25:1219.

  36. Kim S, Gim T, Kang SM. Versatile, Tannic acid-mediated surface pegylation for marine antifouling applications. ACS Appl Mater Interfaces. 2015;7:6412.

  37. Choi S, Kwon TW, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science. 2017;357:279.

  38. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451:977.

  39. Yang S, Zhang Y, Zhang X, Xu J. The influence of pH on a hydrogen-bonded assembly film. Soft Matter. 2007;3:463.

  40. DeLongchamp DM, Hammond PT. Highly ion conductive poly (ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir. 2004;20:5403.

Download references

Acknowledgements

This wok was financially supported by Science and Technology Commission of Shanghai Municipality (Grants No. 16JC1400700) and Fundamental Research Funds for the Central University (102552017045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Yang.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sun, J., Wu, D. et al. Functionalization-Directed Stabilization of Hydrogen-Bonded Polymer Complex Fibers: Elasticity and Conductivity. Adv. Fiber Mater. 1, 71–81 (2019). https://doi.org/10.1007/s42765-019-0001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-0001-0

Keywords

Navigation