Skip to main content

Advertisement

Log in

High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Solid electrolytes have gained attention recently for the development of next-generation Li-ion batteries since they can fundamentally improve the battery stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10−4 S cm−1. Li0.3La0.557TiO3 (LLTO) nanofibers are incorporated into the CLP matrix to form composite solid electrolytes, achieving enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive network, and increases the total Li+ conductivity to 3.31 × 10−4 S cm−1. The all-solid-state Li|LiFePO4 batteries with LLTO nanofiber-incorporated CSEs are able to deliver attractive specific capacity of 147 mAh g−1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

Graphic Abstract

A highly ionic-conductive 3-D fiber network composite solid electrolyte is introduced based on Li-ion conducting nanofibers and amorphous poly(ethylene oxide) (PEO) cross-linked polymer. With the reinforcement of Li0.3La0.557TiO3 (LLTO) nanofibers, the continuous 3D conduction network formed within the polymer matrix greatly enhances the electrochemical and mechanical properties of resultant composite solid electrolytes. Consequently, the lithium dendrite is effectively controlled after long cycles, and the all-solid-state Li|LiFePO4 prototype cells demonstrate excellent cycling stability at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M. Building better batteries. Nature. 2008;451:652.

    Article  Google Scholar 

  2. Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group: World Scientific; 2011. p. 171.

  3. Scrosati B, Croce F, Persi L. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc. 2000;147:1718.

    Article  Google Scholar 

  4. Croce F, Appetecchi G, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394:456.

    Article  Google Scholar 

  5. Armand M. Polymer solid electrolytes-an overview. Solid State Ionics. 1983;9:745.

    Article  Google Scholar 

  6. Cohen MH, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys. 1959;31:1164.

    Article  Google Scholar 

  7. Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state. J Chem Phys. 1958;28:373.

    Article  Google Scholar 

  8. Watanabe M, Nishimoto A. Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes. Solid State Ionics. 1995;79:306.

    Article  Google Scholar 

  9. Aihara Y, Kuratomi J, Bando T, Iguchi T, Yoshida H, Ono T, Kuwana K. Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance. J Power Sour. 2003;114:96.

    Article  Google Scholar 

  10. Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED, Patel AJ, Chen VL, Park MJ, Fragouli P, Iatrou H. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules. 2007;40:4578.

    Article  Google Scholar 

  11. Snyder JF, Carter RH, Wetzel ED. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem Mater. 2007;19:3793.

    Article  Google Scholar 

  12. Sun X-G, Reeder CL, Kerr JB. Synthesis and characterization of network type single ion conductors. Macromolecules. 2004;37:2219.

    Article  Google Scholar 

  13. Kono M, Hayashi E, Watanabe M. Network polymer electrolytes with free chain ends as internal plasticizer. J Electrochem Soc. 1998;145:1521.

    Article  Google Scholar 

  14. Khurana R, Schaefer JL, Archer LA, Coates GW. Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc. 2014;136:7395.

    Article  Google Scholar 

  15. Kim G-T, Appetecchi GB, Carewska M, Joost M, Balducci A, Winter M, Passerini S. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. J Power Sour. 2010;195:6130.

    Article  Google Scholar 

  16. Schulze MW, McIntosh LD, Hillmyer MA, Lodge TP. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 2013;14:122.

    Article  Google Scholar 

  17. Wang L, Li N, He X, Wan C, Jiang C. Macromolecule plasticized interpenetrating structure solid state polymer electrolyte for lithium ion batteries. Electrochim Acta. 2012;68:214.

    Article  Google Scholar 

  18. Lee J-I, Kim DW, Lee C, Kang Y. Enhanced ionic conductivity of intrinsic solid polymer electrolytes using multi-armed oligo (ethylene oxide) plasticizers. J Power Sour. 2010;195:6138.

    Article  Google Scholar 

  19. Stephan AM. Review on gel polymer electrolytes for lithium batteries. Eur Polymer J. 2006;42:21.

    Article  Google Scholar 

  20. Liang Y, Ji L, Guo B, Lin Z, Yao Y, Li Y, Alcoutlabi M, Qiu Y, Zhang X. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. J Power Sour. 2011;196:436.

    Article  Google Scholar 

  21. Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci. 2016;113:7094.

    Article  Google Scholar 

  22. Wang Y-J, Pan Y, Kim D. Conductivity studies on ceramic Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3-filled PEO-based solid composite polymer electrolytes. J Power Sour. 2006;159:690.

    Article  Google Scholar 

  23. Zhang X-W, Li Y, Khan SA, Fedkiw PS. Inhibition of lithium dendrites by fumed silica-based composite electrolytes. J Electrochem Soc. 2004;151:A1257.

    Article  Google Scholar 

  24. Wang G, Yang L, Wang J, Liu H, Dou S. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. J Nanosci Nanotechnol. 2005;5:1135.

    Article  Google Scholar 

  25. Pitawala H, Dissanayake M, Seneviratne V, Mellander B-E, Albinson I. Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO) 9LiTf: Al2O3 nanocomposite polymer electrolyte system. J Solid State Electrochem. 2008;12:783.

    Article  Google Scholar 

  26. Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015;15:2740.

    Article  Google Scholar 

  27. Zhu P, Yan C, Dirican M, Zhu J, Zang J, Ramakrishnan KS, Chung C-C, Hao J, Li Y, Kiyak Y. Li 0.33 La 0.557 TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolyte for all-solid-state lithium batteries. J Mater Chem A. 2018;6:4279.

    Article  Google Scholar 

  28. Adebahr J, Best A, Byrne N, Jacobsson P, MacFarlane D, Forsyth M. Ion transport in polymer electrolytes containing nanoparticulate TiO2: the influence of polymer morphology. Phys Chem Chem Phys. 2003;5:720.

    Article  Google Scholar 

  29. Wang W, Yi E, Fici AJ, Laine RM, Kieffer J. Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J Phys Chem C. 2017;121:2563.

    Article  Google Scholar 

  30. Chen F, Yang D, Zha W, Zhu B, Zhang Y, Li J, Gu Y, Shen Q, Zhang L, Sadoway DR. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim Acta. 2017;258:1106.

    Article  Google Scholar 

  31. Wang C, Zhang X-W, Appleby AJ. Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells. J Electrochem Soc. 2005;152:A205.

    Article  Google Scholar 

  32. Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough J, Yu G. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer li-ion electrolyte. Angewandte Chem. 2018;57:2096–100.

    Article  Google Scholar 

  33. Liu G, Reinhout M, Mainguy B, Baker GL. Synthesis, structure, and ionic conductivity of self-assembled amphiphilic poly (methacrylate) comb polymers. Macromolecules. 2006;39:4726.

    Article  Google Scholar 

  34. Lin H, Kai T, Freeman BD, Kalakkunnath S, Kalika DS. The effect of cross-linking on gas permeability in cross-linked poly (ethylene glycol diacrylate). Macromolecules. 2005;38:8381.

    Article  Google Scholar 

  35. Zeng X-X, Yin Y-X, Li N-W, Du W-C, Guo Y-G, Wan L-J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J Am Chem Soc. 2016;138:15825.

    Article  Google Scholar 

  36. Paul D, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187.

    Article  Google Scholar 

  37. Decker C, Moussa K. Photopolymerization of multifunctional monomers in condensed phase. J Appl Polym Sci. 1987;34:1603.

    Article  Google Scholar 

  38. Kalakkunnath S, Kalika DS, Lin H, Freeman BD. Viscoelastic characteristics of UV polymerized poly (ethylene glycol) diacrylate networks with varying extents of crosslinking. J Polym Sci Part B Polym Phys. 2006;44:2058.

    Article  Google Scholar 

  39. Mei A, Wang X-L, Feng Y-C, Zhao S-J, Li G-J, Geng H-X, Lin Y-H, Nan C-W. Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica. Solid State Ionics. 2008;179:2255.

    Article  Google Scholar 

  40. Varez A, Ibarra J, Rivera A, León C, Santamaría J, Laguna M, Sanjuán M, Sanz J. Influence of quenching treatments on structure and conductivity of the Li3xLa2/3-xTiO3 series. Chem Mater. 2003;15:225.

    Article  Google Scholar 

  41. Várez A, Sanjuán ML, Laguna MA, Peña JI, Sanz J, German F. Microstructural development of the La0.5Li0.5TiO3 lithium ion conductor processed by the laser floating zone (LFZ) methodBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge, UK. J Mater Chem. 2001;11:125.

    Article  Google Scholar 

  42. Strobl G, Hagedorn W. Raman spectroscopic method for determining the crystallinity of polyethylene. J Polym Sci Polym Phys Edn. 1978;16:1181.

    Article  Google Scholar 

  43. Schenzel K, Fischer S, Brendler E. New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose. 2005;12:223.

    Article  Google Scholar 

  44. Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan C-W, Shen Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc. 2017;139:13779.

    Article  Google Scholar 

  45. He R, Echeverri M, Ward D, Zhu Y, Kyu T. Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: effect of prepolymer molecular weight. J Membr Sci. 2016;498:208.

    Article  Google Scholar 

  46. Rietman E, Kaplan M, Cava R. Lithium ion-poly (ethylene oxide) complexes. I. Effect of anion on conductivity. Solid State Ionics. 1985;17:67.

    Article  Google Scholar 

  47. Yang T, Zheng J, Cheng Q, Hu Y-Y, Chan CK. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces. 2017;9:21773.

    Article  Google Scholar 

  48. Wieczorek W, Florjanczyk Z, Stevens J. Composite polyether based solid electrolytes. Electrochim Acta. 1995;40:2251.

    Article  Google Scholar 

  49. Xiong H-M, Zhao X, Chen J-S. New polymer − inorganic nanocomposites: PEO–ZnO and PEO–ZnO–LiClO4 films. J Phys Chem B. 2001;105:10169.

    Article  Google Scholar 

  50. Wang X-L, Fan L-Z, Mei A, Ma F-Y, Lin Y-H, Nan C-W. Ionic transport behavior in poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) and LiClO4 complex. Electrochim Acta. 2008;53:2448.

    Article  Google Scholar 

  51. Lin D, Liu W, Liu Y, Lee HR, Hsu P-C, Liu K, Cui Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide). Nano Lett. 2015;16:459.

    Article  Google Scholar 

  52. Ma Q, Zhang H, Zhou C, Zheng L, Cheng P, Nie J, Feng W, Hu YS, Li H, Huang X. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed. 2016;55:2521.

    Article  Google Scholar 

  53. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc. 2016;138:9385.

    Article  Google Scholar 

  54. Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy. 2018;46:176.

    Article  Google Scholar 

  55. Zhang Z, Zhao Y, Chen S, Xie D, Yao X, Cui P, Xu X. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J Mater Chem A. 2017;5:16984.

    Article  Google Scholar 

  56. Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang QH. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater. 2019;29:1805301.

    Article  Google Scholar 

  57. Hu J, Wang W, Peng H, Guo M, Feng Y, Xue Z, Ye Y, Xie X. Flexible organic–inorganic hybrid solid electrolytes formed via thiol–acrylate photopolymerization. Macromolecules. 1970;2017:50.

    Google Scholar 

  58. Duan H, Yin Y-X, Zeng X-X, Li J-Y, Shi J-L, Shi Y, Wen R, Guo Y-G, Wan L-J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018;10:85.

    Article  Google Scholar 

  59. Huang KC, Li HH, Fan HH, Guo JZ, Xing YM, Hu YP, Wu XL, Zhang JP. An in situ-fabricated composite polymer electrolyte containing large-anion lithium salt for all-solid-state LiFePO4/Li batteries. ChemElectroChem. 2017;4:2293.

    Article  Google Scholar 

  60. Lago N, Garcia-Calvo O, Lopez del Amo JM, Rojo T, Armand M. All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. ChemSusChem. 2015;8:3039.

    Article  Google Scholar 

  61. Li D, Chen L, Wang T, Fan L-Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interfaces. 2018;10:7069.

    Article  Google Scholar 

  62. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016;5:139.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DE-EE0007806.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmut Dirican or Xiangwu Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2762 kb)

Supplementary material 2 (RAR 3012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Zhu, P., Jia, H. et al. High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries. Adv. Fiber Mater. 1, 46–60 (2019). https://doi.org/10.1007/s42765-019-00006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00006-x

Keywords

Navigation