Effect of grooves on nucleate boiling heat transfer from downward facing hemispherical surface

  • Dawen Zhong
  • Jun Sun
  • Ji’an MengEmail author
  • Zhixin Li
  • Xiang Zhang
  • Chen Lin
Research Article


The external reactor vessel cooling (ERVC) is the key method to ensuring the success of in-vessel retention (IVR), which is one strategy of the Generation III+ advanced light water nuclear reactor to address severe accidents. The heat removal ability of ERVC is limited by the critical heat flux (CHF) on the outer surface of the lower head. In this paper, a heating system with the liquid metal as the intermediate heat medium in the scaled vessel was used to investigate the boiling heat transfer. A three-dimensional (3D) hemispherical grooved surface on scaled vessel was proposed and its steady boiling performance was investigated in saturated water. Consequently, the liquid metal temperature exceeded 430 °C when the heating power was 185 kW and the boiling crisis occurred, and the CHF increased from 967.4 to 2030.2 kW/m2 when the orientation increased from 5° to 85°. Compared with the 3D plain surface, the CHF enhancement was higher than 102%. The CHF enhancement could attribute to the increase of heat transfer area and the improvement of the wettability. If the grooves on the reactor vessel could be manufactured by 3D printing in the future, the grooved surface will be a promising structure for ERVC.


downward facing boiling critical heat flux (CHF) liquid metal grooved surface 



The financial support extended by the National Natural Science Foundation of China (No. 51706068), Beijing Natural Science Foundation (No. 3192035), Beijing Key Research and Development Program (No. Z181100005118013), the China Advanced Light Water Reactors Major Projects (No. 2011ZX06004-008), and the Fundamental Research Funds for the Central Universities (No. 2017MS039) is gratefully acknowledgement.


  1. Angayarkanni, S. A., Philip, J. 2015. Review on thermal properties of nanofluids: Recent developments. Adv Colloid Interfac, 225: 146–176.CrossRefGoogle Scholar
  2. Bai, L. Z., Zhang, L. P., Guo, J. H., Lin, G. P., Bu, X. Q., Wen, D. S. 2016. Evaporation/boiling heat transfer characteristics in an artery porous structure. Appl Therm Eng, 104: 587–595.CrossRefGoogle Scholar
  3. Chu, K. H., Soo Joung, Y., Enright, R., Buie, C. R., Wang, E. N. 2013. Hierarchically structured surfaces for boiling critical heat flux enhancement. Appl Phys Lett, 102: 151602.CrossRefGoogle Scholar
  4. Fogaça, W., Mori, S., Imanishi, K., Okuyama, K., Piqueira, J. R. C. 2018. Effect of honeycomb porous plate on critical heat flux in saturated pool boiling of artificial seawater. Int J Heat Mass Tran, 125: 994–1002.CrossRefGoogle Scholar
  5. Hou, F. X., Chang, H. J., Zhao, Y. F., Zhang, M., Gao, T. F., Chen, P. P. 2017. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions. Nucl Eng Des, 316: 209–217.CrossRefGoogle Scholar
  6. Jun, S., Kim, J., You, S. M., Kim, H. Y. 2016. Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water. Int J Heat Mass Tran, 103: 277–284.CrossRefGoogle Scholar
  7. Mori, S., Yokomatsu, F., Utaka, Y. 2018. Enhancement of critical heat flux using spherical porous bodies in saturated pool boiling of nanofluid. Appl Therm Eng, 144: 219–230.CrossRefGoogle Scholar
  8. Mt Aznam, S., Mori, S., Sakakibara, F., Okuyama, K. 2016. Effects of heater orientation on critical heat flux for nanoparticle-deposited surface with honeycomb porous plate attachment in saturated pool boiling of water. Int J Heat Mass Tran, 102: 1345–1355.CrossRefGoogle Scholar
  9. Noh, S. W., Suh, K. Y. 2013. Critical heat flux for APR1400 lower head vessel during a severe accident. Nucl Eng Des, 258: 116–129.CrossRefGoogle Scholar
  10. Pham, Q. T., Kim, T. I., Lee, S. S., Chang, S. H. 2012. Enhancement of critical heat flux using nano-fluids for Invessel Retention-External Vessel Cooling. Appl Therm Eng, 35: 157–165.CrossRefGoogle Scholar
  11. Sohag, F. A., Beck, F. R., Mohanta, L., Cheung, F. B., Segall, A. E., Eden, T. J., Potter, J. K. 2017. Effects of subcooling on downward facing boiling heat transfer with micro-porous coating formed by Cold Spray technique. Int J Heat Mass Tran, 106: 767–780.CrossRefGoogle Scholar
  12. Tetreault-Friend, M., Azizian, R., Bucci, M., McKrell, T., Buongiorno, J., Rubner, M., Cohen, R. 2016. Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers. Appl Phys Lett, 108: 243102.CrossRefGoogle Scholar
  13. Wang, Y. Q., Luo, J. L., Heng, Y., Mo, D. C., Lyu, S. S. 2018. Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure. Int J Heat Mass Tran, 119: 333–342.CrossRefGoogle Scholar
  14. Yang, J., Cheung, F. B., Rempe, J. L., Suh, K. Y., Kim, S. B. 2005. Correlations of nucleate boiling heat transfer and critical heat flux for external reactor vessel cooling. In: Proceedings of the 2005 ASME Summer Heat Transfer Conference, HT 2005-72334.Google Scholar
  15. Yang, J., Dizon, M. B., Cheung, F. B., Rempe, J. L., Suh, K. Y., Kim, S. B. 2006. CHF enhancement by vessel coating for external reactor vessel cooling. Nucl Eng Des, 236: 1089–1098.CrossRefGoogle Scholar
  16. Zhong, D. W., Meng, J. A., Li, Z. X. 2016. Saturated pool boiling from downward facing structured surfaces with grooves. CIESC J, 67: 3559–3565.Google Scholar
  17. Zhong, D. W., Meng, J., Li, Z. X., Guo, Z. Y. 2015. Critical heat flux for downward-facing saturated pool boiling on pin fin surfaces. Int J Heat Mass Tran, 87: 201–211.CrossRefGoogle Scholar
  18. Zhong, D. W., Sun, J., Meng, J. A., Li, Z. X. 2018a. Effects of orientation and structure geometry on boiling heat transfer for downward facing IGTAC surfaces. Int J Heat Mass Tran, 123: 468–472.CrossRefGoogle Scholar
  19. Zhong, D. W., Sun, J., Meng, J. A., Li, Z. X. 2018b. Experimental study of downward facing boiling on a structured hemispherical surface. Appl Therm Eng, 134: 594–602.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Dawen Zhong
    • 1
  • Jun Sun
    • 2
  • Ji’an Meng
    • 3
    Email author
  • Zhixin Li
    • 3
  • Xiang Zhang
    • 4
  • Chen Lin
    • 5
  1. 1.Beijing Key Laboratory of Passive Nuclear Safety TechnologyNorth China Electric Power UniversityBeijingChina
  2. 2.Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of EducationTsinghua UniversityBeijingChina
  3. 3.Key Laboratory of Thermal Science and Power Engineering, Ministry of EducationTsinghua UniversityBeijingChina
  4. 4.State Nuclear Power Technology Research & Development CenterBeijingChina
  5. 5.School of Energy Power and Mechanical EngineeringNorth China Electric Power UniversityBeijingChina

Personalised recommendations