Advertisement

Effect of instantaneous change of surface temperature and density on an unsteady liquid–vapour front in a porous medium

  • Zafar Hayat KhanEmail author
  • Rashid Ahmad
  • Licheng Sun
Research Article
  • 418 Downloads

Abstract

This article presents a comprehensive analysis of time dependent condensation model embedded in a porous medium with variations in liquid–vapour densities. Both similarity and asymptotic solutions for the unsteady liquid–vapour phase change front are obtained with the manifestation of various pertinent parameters. The obtained results are compared which congregate well as depicted clearly in graphs. Results indicate that with different diffusivity and contrast ratios, the similarity front parameter is found to be gradually declining with variation in a density ratio. We have shown for the condensation process, the ratio of sensible to latent heat is independent of time and is equal to the half of the Stefan number of the liquid phase.

Keywords

unsteady liquid–vapour front porous medium Stefan number similarity and asymptotic solutions density variations 

Notes

Acknowledgements

The corresponding author is profoundly grateful to the financial support of the National Natural Science Foundation of China (Grant Nos. 51709191, 51706149, and 51606130), Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education (Grant No. ARES-2018-10), and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. Skhl1803).

References

  1. Bear, J., Buchlin, J.-M. 1981. Modelling and Applications of Transport Phenomena in Porous Media. Kluwer Academic Publishers.Google Scholar
  2. Beckett, G., MacKenzie, J. A., Robertson, M. L. 2001. A moving mesh finite element method for the solution of two-dimensional Stefan problems. J Comput Phys, 168: 500–518.MathSciNetCrossRefGoogle Scholar
  3. Bernoff, A. J., Witelski, T. P. 2010. Stability and dynamics of self-similarity in evolution equations. J Eng Math, 66: 11–31.MathSciNetCrossRefGoogle Scholar
  4. Bodvarsson, G., Pruess, K., Lippmann, M. 1986. Modeling of geothermal systems. J Petrol Technol, 38: 1007–1021.CrossRefGoogle Scholar
  5. Bonacina, C., Comini, G., Fasano, A., Primicerio, M. 1973. Numerical solution of phase-change problems. Int J Heat Mass Tran, 16: 1825–1832.CrossRefGoogle Scholar
  6. Carey, V. P. 2007. Liquid-Vapor Phase-Change Phenomena. Taylor & Francis, Inc.Google Scholar
  7. Carslaw, H. S., Jaeger, J. C. 1959. Conduction of Heat in Solids. Clarendon Press.Google Scholar
  8. Chiareli, A. O. P., Huppert, H. E., Worster, M. G. 1994. Segregation and flow during the solidification of alloys. J Cryst Growth, 139: 134–146.CrossRefGoogle Scholar
  9. Date, A. W. 1991. A strong enthalpy formulation for the Stefan problem. Int J Heat Mass Tran, 34: 2231–2235.CrossRefGoogle Scholar
  10. Douglas, J. 1957. A uniqueness theorem for the solution of a Stefan problem. Proc Am Math Soc, 8: 402–408.MathSciNetCrossRefGoogle Scholar
  11. Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S., Zalewski, L. 2011. A review on phase-change materials: Mathematical modeling and simulations. Renew Sust Energ Rev, 15: 112–130.CrossRefGoogle Scholar
  12. Evans, G. W. 1951. A note on the existence of a solution to a problem of Stefan. Q Appl Math, 9: 185–193.MathSciNetCrossRefGoogle Scholar
  13. Gupta, S. C. 2003. The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier.Google Scholar
  14. Hager, J., Whitaker, S. 2000. Vapor–liquid jump conditions within a porous medium: Results for mass and energy. Transport Porous Med, 40: 73–111.MathSciNetCrossRefGoogle Scholar
  15. Harris, K. T., Haji-Sheikh, A., Agwu Nnanna, A. G. 2001. Phase-change phenomena in porous media—a non-local thermal equilibrium model. Int J Heat Mass Tran, 44: 1619–1625.CrossRefGoogle Scholar
  16. Khan, Z. H. 2014. Transition to instability of liquid–vapour front in a porous medium cooled from above. Int J Heat Mass Tran, 70: 610–620.CrossRefGoogle Scholar
  17. Khan, Z. H., Pritchard, D. 2013. Liquid–vapour fronts in porous media: Multiplicity and stability of front positions. Int J Heat Mass Tran, 61: 1–17.CrossRefGoogle Scholar
  18. Khan, Z. H., Pritchard, D. 2015. Anomaly of spontaneous transition to instability of liquid–vapour front in a porous medium. Int J Heat Mass Tran, 84: 448–455.CrossRefGoogle Scholar
  19. Lunardini, V. J. 1981. Heat Transfer in Cold Climates. Van Nostrand Reinhold Company.Google Scholar
  20. Masur, L. J., Mortensen, A., Cornie, J. A., Flemings, M. C. 1989. Infiltration of fibrous preforms by a pure metal: Part II. Experiment. Metall Trans A, 20: 2549–2557.CrossRefGoogle Scholar
  21. Mattheij, R. M. M., Rienstra, S. W., ten Thije Boonkkamp, J. H. M. 2005. Partial Differential Equations: Modeling, Analysis, Computation. SIAM.Google Scholar
  22. Mortensen, A., Masur, L. J., Cornie, J. A., Flemings, M. C. 1989. Infiltration of fibrous preforms by a pure metal: Part I. Theory. Metall Trans A, 20: 2535–2547.CrossRefGoogle Scholar
  23. Ochoa-Tapia, J. A., Whitaker, S. 1997. Heat transfer at the boundary between a porous medium and a homogeneous fluid. Int J Heat Mass Tran, 40: 2691–2707.CrossRefGoogle Scholar
  24. Rubin, A., Schweitzer, S. 1972. Heat transfer in porous media with phase change. Int J Heat Mass Tran, 15: 43–60.CrossRefGoogle Scholar
  25. Solomon, A. 1981. A note on the Stefan number in slab melting and solidification. Lett Heat Mass Trans, 8: 229–235.CrossRefGoogle Scholar
  26. Torranc, K. E. 1986. Phase-change heat transfer in porous media. Heat Transfer, 1: 181–188.Google Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Zafar Hayat Khan
    • 1
    • 2
    Email author
  • Rashid Ahmad
    • 3
    • 4
  • Licheng Sun
    • 1
  1. 1.State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & HydropowerSichuan UniversityChengduChina
  2. 2.Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of EducationTsinghua UniversityBeijingChina
  3. 3.School of Mathematics and PhysicsUniversity of QueenslandSt Lucia, BrisbaneAustralia
  4. 4.Faculty of Engineering SciencesGIK Institute of Engineering Sciences and TechnologyTopi, Swabi, KPKPakistan

Personalised recommendations