Skip to main content
Log in

Numerical assessment of ambient inhaled micron particle deposition in a human nasal cavity

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

Understanding the particle exposure characteristics in human respiratory airways plays important roles in assessing the therapeutic or toxic effects of inhaled particles. In this study, numerical modelling approach was used to investigate micron-sized particle deposition in an anatomically realistic human nasal cavity. Flow rate of 15 L/min representing typical normal breathing rate for an adult was adopted, and particles were passively released from the ambient air adjacent to the nostrils. Through introducing a surface mapping technique, the 3D nasal cavity was “unwrapped” into a 2D planar domain, which allows a complete visual coverage of the spatial particle deposition in the intricate nasal cavity. Furthermore, deposition enhancement factor was applied to extract regional deposition concentration intensity relative to background intensity of the whole nasal passage. Results show that micron particle exposure in the nasal cavity is closely associated with nasal anatomical shape, airflow dynamics, and particle inertia. Specifically, the main passage of the nasal cavity received high particle deposition dosage, especially for larger micron-sized particles due to increased particle inertia. The nasal vestibule exhibited limited particle filtration effect and most deposited particles in this region concentrated posteriorly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Asgharian, B., Price, O. T., Oldham, M., Chen, L. C., Saunders, E. L., Gordon, T., Mikheev, V. B., Minard, K. R., Teeguarden, J. G. 2014. Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhal Toxicol, 26: 829–842.

    Article  Google Scholar 

  • Bai, R., Zhang, L. L., Liu, Y., Meng, L., Wang, L. M., Wu, Y., Li, W., Ge, C. C., Le Guyader, L., Chen, C. Y. 2010. Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicol Lett, 199: 288–300.

    Article  Google Scholar 

  • Cheng, K. H., Cheng, Y. S., Yeh, H. C., Guilmette, R. A., Simpson, S. Q., Yang, Y. H., Swift, D. L. 1996. In vivo measurements of nasal airway dimensions and ultrafine aerosol deposition in the human nasal and oral airways. J Aerosol Sci, 27: 785–801.

    Article  Google Scholar 

  • Corley, R. A., Kabilan, S., Kuprat, A. P., Carson, J. P., Minard, K. R., Jacob, R. E., Timchalk, C., Glenny, R., Pipavath, S., Cox, T., Wallis, C. D., Larson, R. F., Fanucchi, M. V., Postlethwait, E. M., Einstein, D. R. 2012. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol Sci, 128: 500–516.

    Article  Google Scholar 

  • Dai, Y. T., Chang, C. P., Tu, L. J., Hsu, D. J. 2007. Development of a taiwanese head model for studying occupational particle exposure. Inhal Toxicol, 19: 383–392.

    Article  Google Scholar 

  • Dastan, A., Abouali, O., Ahmadi, G. 2014. CFD simulation of total and regional fiber deposition in human nasal cavities. J Aerosol Sci, 69: 132–149.

    Article  Google Scholar 

  • Dong, J. L., Ma, J. W., Shang, Y. D., Inthavong, K., Qiu, D. S., Tu, J. Y., Frank-Ito, D. 2018. Detailed nanoparticle exposure analysis among human nasal cavities with distinct vestibule phenotypes. J Aerosol Sci, 121: 54–65.

    Article  Google Scholar 

  • Doorly, D. J., Taylor, D. J., Schroter, R. C. 2008. Mechanics of airflow in the human nasal airways. Resp Physiol Neurobi, 163: 100–110.

    Article  Google Scholar 

  • Farhadi Ghalati, P., Keshavarzian, E., Abouali, O., Faramarzi, A., Tu, J. Y., Shakibafard, A. 2012. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Comput Biol Med, 42: 39–49.

    Article  Google Scholar 

  • Ge, Q. J., Li, X. D., Inthavong, K., Tu, J. Y. 2013. Numerical study of the effects of human body heat on particle transport and inhalation in indoor environment. Build Environ, 59: 1–9.

    Article  Google Scholar 

  • Ghahramani, E., Abouali, O., Emdad, H., Ahmadi, G. 2014. Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway. J Aerosol Sci, 67: 188–206.

    Article  Google Scholar 

  • Golshahi, L., Noga, M. L., Thompson, R. B., Finlay, W. H. 2011. In vitro deposition measurement of inhaled micrometer-sized particles in extrathoracic airways of children and adolescents during nose breathing. J Aerosol Sci, 42: 474–488.

    Article  Google Scholar 

  • Gross, E. A., Swenberg, J. A., Fields, S., Popp, J. A. 1982. Comparative morphometry of the nasal cavity in rats and mice. J Anat, 135: 83–88.

    Google Scholar 

  • Hsu, D. J., Chuang, M. H. 2012. In-vivo measurements of micrometer-sized particle deposition in the nasal cavities of taiwanese adults. Aerosol Sci Tech, 46: 631–638.

    Article  Google Scholar 

  • Inthavong, K., Ge, Q. J., Li, X. D., Tu, J. Y. 2012. Detailed predictions of particle aspiration affected by respiratory inhalation and airflow. Atmos Environ, 62: 107–117.

    Article  Google Scholar 

  • Inthavong, K., Ge, Q. J., Li, X. D., Tu, J. Y. 2013. Source and trajectories of inhaled particles from a surrounding environment and its deposition in the respiratory airway. Inhal Toxicol, 25: 280–291.

    Article  Google Scholar 

  • Inthavong, K., Shang, Y. D., Tu, J. Y. 2014. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Resp Physiol Neurobi, 190: 54–61.

    Article  Google Scholar 

  • Inthavong, K., Tu, J. Y., Ahmadi, G. 2009. Computational modelling of gas-particle flows with different particle morphology in the human nasal cavity. J Comput Multiphase Flows, 1: 57–82.

    Article  MathSciNet  Google Scholar 

  • Inthavong, K., Wen, J., Tian, Z. F., Tu, J. Y. 2008. Numerical study of fibre deposition in a human nasal cavity. J Aerosol Sci, 39: 253–265.

    Article  Google Scholar 

  • Kelly, J. T., Asgharian, B., Kimbell, J. S., Wong, B. A. 2004. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles. Aerosol Sci Tech, 38: 1063–1071.

    Article  Google Scholar 

  • Kelly, J. T., Asgharian, B., Wong, B. A. 2005. Inertial particle deposition in a monkey nasal mold compared with that in human nasal replicas. Inhal Toxicol, 17: 823–830.

    Article  Google Scholar 

  • Kimbell, J. S. 2006. Nasal dosimetry of inhaled gases and particles: Where do inhaled agents go in the nose? Toxicol Pathol, 34: 270–273.

    Article  Google Scholar 

  • King Se, C. M., Inthavong, K., Tu, J. Y. 2010. Inhalability of micron particles through the nose and mouth. Inhal Toxicol, 22: 287–300.

    Article  Google Scholar 

  • Naftali, S., Rosenfeld, M., Wolf, M., Elad, D. 2005. The air-conditioning capacity of the human nose. Ann Biomed Eng, 33: 545–553.

    Article  Google Scholar 

  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 16: 437–445.

    Article  Google Scholar 

  • Oldham, M. J. 2000. Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sci Tech, 32: 61–71.

    Article  Google Scholar 

  • Schroeter, J. D., Garcia, G. J. M., Kimbell, J. S. 2011. Effects of surface smoothness on inertial particle deposition in human nasal models. J Aerosol Sci, 42: 52–63.

    Article  Google Scholar 

  • Schroeter, J. D., Kimbell, J. S., Asgharian, B. 2006. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model. J Aerosol Med, 19: 301–313.

    Article  Google Scholar 

  • Schroeter, J. D., Kimbell, J. S., Asgharian, B., Tewksbury, E. W., Singal, M. 2012. Computational fluid dynamics simulations of submicrometer and micrometer particle deposition in the nasal passages of a Sprague-Dawley rat. J Aerosol Sci, 43: 31–44.

    Article  Google Scholar 

  • Schroeter, J. D., Tewksbury, E. W., Wong, B. A., Kimbell, J. S. 2015. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model. J Aerosol Med Pulm D, 28: 20–29.

    Article  Google Scholar 

  • Shang, Y. D., Dong, J. L., Inthavong, K., Tu, J. Y. 2015a. Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities. Inhal Toxicol, 27: 694–705.

    Article  Google Scholar 

  • Shang, Y. D., Inthavong, K., Tu, J. Y. 2015b. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput Fluids, 114: 141–150.

    Article  MathSciNet  Google Scholar 

  • Tian, L., Shang, Y. D., Chen, R., Bai, R., Chen, C. Y., Inthavong, K., Tu, J. Y. 2019. Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Part Fibre Toxicol, 16: 6.

    Article  Google Scholar 

  • Tian, L., Shang, Y. D., Chen, R., Bai, R., Chen, C. Y., Inthavong, K., Tu, J. Y. 2017a. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop. Part Fibre Toxicol, 14: 24.

    Article  Google Scholar 

  • Tian, L., Shang, Y. D., Dong, J. L., Inthavong, K., Tu, J. Y. 2017b. Human nasal olfactory deposition of inhaled nanoparticles at low to moderate breathing rate. J Aerosol Sci, 113: 189–200.

    Article  Google Scholar 

  • Xu, X. Y., Shang, Y. D., Tian, L., Weng, W. G., Tu, J. Y. 2018. A numerical study on firefighter nasal airway dosimetry of smoke particles from a realistic composite deck fire. J Aerosol Sci, 123: 91–104.

    Article  Google Scholar 

  • Zhang, Z., Kleinstreuer, C., Donohue, J. F., Kim, C. S. 2005. Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci, 36: 211–233.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council (ARC project ID DP160101953).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiao Inthavong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Inthavong, K. Numerical assessment of ambient inhaled micron particle deposition in a human nasal cavity. Exp. Comput. Multiph. Flow 1, 109–115 (2019). https://doi.org/10.1007/s42757-019-0015-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0015-0

Keywords

Navigation