Green Manure Crops Affected Soil Chemical Properties and Fungal Diversity and Community of Apple Orchard in the Loess Plateau of China

Abstract

The present study aimed to clarify the effects of three manure crops in orchards on nutrients and fungal community diversity and composition of the soil in the Loess Plateau. The high-throughput sequencing technology was used to analyze the fungal community diversity and composition in an apple orchard intercropping three types of green manure in the Loess Plateau of China. At the same time, soil nutrients are also determined. Intercropping with the green manures Medicago sativa, Trifolium repens, and Dactylis glomerata decreased content of soil available potassium. Trifolium repens increased the content of soil water by 5.71%, and D. glomerata increased the soil pH. Medicago sativa and T. repens increased the soil fungal richness of apple orchard. The dominated soil fungi included Ascomycota, Basidiomycota, Mortierellomycota, and Chytridiomycota. The relative abundance of Glomeromycota in the treatments in which green manure was intercropped was higher than that of the clean cultivated treatment by 234.37–550.0%. Green manure intercropping increased the accumulation of specific genera, such as Petriella, Pseudogymnoascus, and Tetracladium, which can inhibit pathogenic fungi in the soil and promote the decomposition of plant leaves. The intercropping with three green manure crops reduced the content of available potassium in the soil, changed the water content, soil pH, and fungal communities of apple orchards in the Loess Plateau, and aided in the optimization of soil fungal community composition to nutrients uptake and pathogen inhibition.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abadie C, Edel V, Alabouvette C (1998) Soil suppressiveness to Fusarium wilt, influence of a cover-plant on density and diversity of Fusarium populations. Soil Biol Biochem 30(5):643–649. https://doi.org/10.1016/S0038-0717(97)00154-5

    CAS  Article  Google Scholar 

  2. Abujabhah IS, Bound SA, Doyle R, Bowman JP (2016) Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl Soil Ecol 98:243–253. https://doi.org/10.1016/j.apsoil.2015.10.021

    Article  Google Scholar 

  3. Astier M, Maass JM, Etchevers-Barra JD, Pena JJ, de Leon GF (2006) Short-term green manure and tillage management effects on maize yield and soil quality in an Andisol. Soil Tillage Res 88(1–2):153–159. https://doi.org/10.1016/j.still.2005.05.003

    Article  Google Scholar 

  4. Brunetto G, Ventura M, Scandellari F, Ceretta CA, Kaminski J, de Melo GW, Tagliavini M (2011) Nutrient release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutr Cycl Agroecosyst 90(3):299–308. https://doi.org/10.1007/s10705-011-9430-8

    CAS  Article  Google Scholar 

  5. Cao Q, Wang ZK, Shen YY (2019) Seasonal variation of soil moisture content in apple orchard and grass intercropping system in Longdong. Arid Zone Res 36(1):77–84. https://doi.org/10.13866/j.azr.2019.01.09

    Article  Google Scholar 

  6. Cavael U, Diehl K, Lentzsch P (2020) Assessment of growth suppression in apple production with replant soils. Ecol Indic 109:105046. https://doi.org/10.1016/j.ecolind.2019.105846

    Article  Google Scholar 

  7. Chen Y, Wen X, Sun Y, Zhang J, Wu W, Liao Y (2014) Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci Hortic 172:248–257. https://doi.org/10.1016/j.scienta.2014.04.010

    Article  Google Scholar 

  8. Czarnes S, Hallett PD, Bengough AG, Young IM (2000) Root and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51(3):435–443. https://doi.org/10.1046/j.1365-2389.2000.00327.x

    Article  Google Scholar 

  9. Danon M, Chen Y, Hadar Y (2010) Ascomycete communities associated with suppression of Sclerotium rolfsii in compost. Fungal Ecol 3(1):20–30. https://doi.org/10.1016/j.funeco.2009.05.003

    Article  Google Scholar 

  10. Deakin G, Tilston EL, Bennett J, Passey T, Harrison N, Fernández-Fernández F, Xu X (2018) Spatial structuring of soil microbial communities in commercial apple orchards. Appl Soil Ecol 130:1–12. https://doi.org/10.1016/j.apsoil.2018.05.015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edgar RC (2013) UPARSE, highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/NMETH.2604

    CAS  Article  Google Scholar 

  12. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112(8):E911–E920. https://doi.org/10.1073/pnas.1414592112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Ferree DC, Warrington IJ (2003) Apples botany, production and uses. CABI Publishing, London

    Google Scholar 

  15. Franke-Whittle IH, Manici LM, Insam H, Stres B (2015) Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant Soil 395(1–2):317–333. https://doi.org/10.1007/s11104-015-2562-x

    CAS  Article  Google Scholar 

  16. Fu RM (1989) The invention of the new apple variety Qinguan. Shanxi J Agric Sci 4:38

    Google Scholar 

  17. Gao XF (2017) Root exudates of dominant plants and the effects of their main components on soil microorganisms in Stipa breviflora desert steppe. Inner Mongolia Agricultural University, Huhehaote

    Google Scholar 

  18. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil, selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

    CAS  Article  PubMed  Google Scholar 

  19. Guissou T, Babana AH, Sanon KB, Ba AM (2016) Effects of arbuscular mycorrhizae on growth and mineral nutrition of greenhouse propagated fruit trees from diverse geographic provenances. Biotechnol Agron Soc Environ 20(3):417–426

    Google Scholar 

  20. Guo GN, Yan ZL, Zhang HT, Zhang SN, Liu ZZ (2009) Current situation of production of early and mid season apple cultivars in China and progress in China and progress in breeding for early and mid season apple cultivars. J Fruit Sci 26(6):871–877

    Google Scholar 

  21. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504. https://doi.org/10.1101/gr.112730.110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Haynes RJ (1983) Soil acidification induced by leguminous crops. Grass Forage Sci 38(1):1–11

    CAS  Article  Google Scholar 

  23. Huang SW, Jin JY (1995) Research progress in soil potassium form and its phytoavailability. Soil Fertil 5:23–29

    Google Scholar 

  24. Isobe K, Tsuboki Y (1998) Relationship between the amount of root exudate and the infection rate of arbuscular mycorrhizal fungi in gramineous and leguminous crops. Plant Prod Sci 1(1):37–38. https://doi.org/10.1626/pps.1.37

    Article  Google Scholar 

  25. Isobe K, Tateishi A, Nomura K, Inoue H, Tsuboki Y (2001) Flavonoids in the extract and exudate of the roots of leguminous crops. Plant Prod Sci 4(4):278–279. https://doi.org/10.1626/pps.4.278

    CAS  Article  Google Scholar 

  26. Jiao S, Liu Z, Lin Y, Yang J, Chen W, Wei G (2016) Bacterial communities in oil contaminated soils, biogeography and co-occurrence patterns. Soil Biol Biochem 98:64–73. https://doi.org/10.1016/j.soilbio.2016.04.005

    CAS  Article  Google Scholar 

  27. Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, Wanek W, Gottsberger R, Strauss J, Gorfer M (2010) Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Divers 44(1):65–75. https://doi.org/10.1007/s13225-010-0053-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krishna H, Das B, Attri BL, Grover M, Ahmed N (2010) Suppression of Botryosphaeria canker of apple by arbuscular mycorrhizal fungi. Crop Prot 29(9):1049–1054. https://doi.org/10.1016/j.cropro.2010.05.005

    Article  Google Scholar 

  29. Li J, Zhang DB, Wang Z, Yao PW, Zhao N, Cao QH, Yu CW, Cao WD, Gao YJ (2012) Effect of fertilizer and green manure incorporation methods on the growth and water use efficiency of winter wheat. Agric Res Arid Areas 30(3):136–142

    Google Scholar 

  30. Li Q, Yang SP, Cui GL, Huang JG, Li LY, Cheng YY (2017) Microbial biomass, enzyme activity and composition of the fungal community in rhizospheric soil cropped with Artemisia annua for several years. Acta Pratacul Sin 26(1):34–42. https://doi.org/10.11686/cyxb2016091

    Article  Google Scholar 

  31. Liu D, Liu G, Chen L, Wang J, Zhang L (2018a) Soil pH determines fungal diversity along an elevation gradient in Southwestern China. Sci China Life Sci 61(6):718–726. https://doi.org/10.1007/s11427-017-9200-1

    Article  PubMed  Google Scholar 

  32. Liu J, Xie WY, Zhang QM, Xu SJ (2018b) Leaf decomposition and nutrient release characteristics of different plant species in the Loess Hilly region. Acta Pratacul Sin 27(9):25–33. https://doi.org/10.11686/cyxb2017442

    Article  Google Scholar 

  33. Longa CMO, Nicola L, Antonielli L, Mescalchin E, Zanzotti R, Turco E, Pertot I (2017) Soil microbiota respond to green manure in organic vineyards. J Appl Microbiol 123(6):1547–1560. https://doi.org/10.1111/jam.13606

    CAS  Article  PubMed  Google Scholar 

  34. Luo BR, Li CC, Zhu YR, Yang JF, Gao SL (2019) Effects of three green manures on soil pH and exchangeable cation content in tea garden. Subtrop Agric Res 15(02):121–126. https://doi.org/10.13321/j.cnki.subtrop.agric.res.2019.02.009

    Article  Google Scholar 

  35. Lv LX, Wang W, Wang XR, Zhang LX, Li AM, Gao M, Zhang LS, Li BR, Han MY (2018) Release of nutrients during the decomposition of green manure in different levels of the soil in an apple orchard in Weibei highland. J Fruit Sci 35(5):586–595. https://doi.org/10.13925/j.cnki.gsxb.20170465

    Article  Google Scholar 

  36. Ma SC (2020) Composition of root exudates of forage grass and crops and their allelopathy effects. Gansu Agricultural University, Lanzhou

    Google Scholar 

  37. Maher BA, Mutch TJ, Cunningham D (2009) Magnetic and geochemical characteristics of Gobi Desert surface sediments: implications for provenance of the Chinese Loess Plateau. Geology 37(3):279–282. https://doi.org/10.1130/G25293A.1

    CAS  Article  Google Scholar 

  38. Marsh AG, Maxson RE, Manahan DT (2001) High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos. Science 291(5510):1950–1952

    CAS  Article  Google Scholar 

  39. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  40. Mazzola M (1998) Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88(9):930–938. https://doi.org/10.1094/PHYTO.1998.88.9.930

    CAS  Article  PubMed  Google Scholar 

  41. Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196. https://doi.org/10.1016/0038-0717(86)90026-X

    Article  Google Scholar 

  42. Munnecke DE (1984) Establishment of microorganisms in fumigated avocado soil to attempt to prevent reinvasion of the soils by phytophthora-cinnamomi. Trans Br Mycol Soc 83:287–294. https://doi.org/10.1016/S0007-1536(84)80149-7

    CAS  Article  Google Scholar 

  43. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild, an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  44. Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different mediterranean land-use backgrounds. PLoS One 7(4):e34847. https://doi.org/10.1371/journal.pone.0034847

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Perez-Alvarez EP, Luis Perez-Sotes J, Garcia-Escudero E, Peregrina F (2013) Cover crop short-term effects on soil NO3--N availability, nitrogen nutritional status, yield, and must quality in a calcareous vineyard of the AOC Rioja, Spain. Commun Soil Sci Plant Anal 44(1–4):711–721. https://doi.org/10.1080/00103624.2013.748122

    CAS  Article  Google Scholar 

  46. Perez-Alvarez EP, Garcia-Escudero E, Peregrina F (2015) Soil nutrient availability under cover crops, effects on vines, must, and wine in a tempranillo vineyard. Am J Enol Vitic 66(3):311–320. https://doi.org/10.5344/ajev.2015.14092

    CAS  Article  Google Scholar 

  47. Qian X, Gu J, Pan HJ, Zhang KY, Sun W, Wang XJ, Gao H (2015) Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur J Soil Biol 70:23–30. https://doi.org/10.1016/j.ejsobi.2015.06.005

    CAS  Article  Google Scholar 

  48. Qian YL, Liang ZT, Cao Q, Yang XL, Shen YY, Wang XZ (2018) Effects of grass-planting on soil bacterial community composition of apple orchard in Longdong arid region. Chin J Ecol 37(10):3010–3017. https://doi.org/10.13292/j.1000-4890.201810.021

    Article  Google Scholar 

  49. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. https://doi.org/10.1038/nature11450

    CAS  Article  PubMed  Google Scholar 

  50. Ramos ME, Benítez E, García PA, Robles AB (2010) Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Appl Soil Ecol 44(1):6–14. https://doi.org/10.1016/j.apsoil.2009.08.005

    Article  Google Scholar 

  51. Rutto KL, Mizutani F, Moon DG, Cho YS, Kadoya K (2003) Seasonal fluctuations in mycorrhizal spore populations and infection rates of vineyard soils planted with five legume cover crops. J Jpn Soc Horticultural Sci 72(4):262–267. https://doi.org/10.1109/SSDM.1998.688117

    Article  Google Scholar 

  52. Sánchez EE, Giayetto A, Cichón L, Fernández D, Aruani MC, Curetti M (2007) Cover crops influence soil properties and tree performance in an organic apple (Malus domesticaBorkh) orchard in northern Patagonia. Plant Soil 292:193–203. https://doi.org/10.1007/s11104-007-9215-7

    CAS  Article  Google Scholar 

  53. Schussler A, Gehrig H, Schwarzott D, Walker C (2001) Analysis of partial Glomales SSU rRNA gene sequences, implications for primer design and phylogeny. Mycol Res 105:5–15. https://doi.org/10.1017/S0953756200003725

    CAS  Article  Google Scholar 

  54. Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Baggs EM, Johnson D, Fierer N, Bardgett RD (2018) Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv 4(11):eaau4578. https://doi.org/10.1126/sciadv.aau4578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Shen RF, Zhao XQ (2015) Role of soil microbes in the acquisition of nutrients by plants. Acta Ecol Sin 35(20):6584–6591. https://doi.org/10.5846/stxb201506051140

    Article  Google Scholar 

  56. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic press, Londong

    Google Scholar 

  57. Srivastava AK, Huchche AD, Ram L, Singh S (2007) Yield prediction in intercropped versus monocropped citrus orchards. Sci Hortic 114(1):67–70. https://doi.org/10.1016/j.scienta.2007.05.005

    Article  Google Scholar 

  58. Sun Q, Wu HL, Chen F, Kang JH (2020) Characteristics of soil nutrients and fungal community composition in crop rhizosphere under different rotation patterns. Huan Jing Ke Xue 41(10):4682–4689. https://doi.org/10.13227/j.hjkx.202001031

    Article  PubMed  Google Scholar 

  59. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species, cymodocea serrulata, halophila ovalis and thalassia hemprichii. PLoS One 8(8):e72520. https://doi.org/10.1371/journal.pone.0072520

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Sweet RM, Schreiner RP (2010) Alleyway cover crops have little influence on pinot noir grapevines (Vitis vinifera L.) in two western Oregon vineyards. Am J Enol Vitic 61(2):240–252. https://doi.org/10.1109/MVHI.2010.54

    Article  Google Scholar 

  61. Tewoldemedhin YT, Mazzola M, Botha WJ, Spies CFJ, McLeod A (2011) Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol 130(2):215–229. https://doi.org/10.1007/s10658-011-9747-9

    CAS  Article  Google Scholar 

  62. Tian Y, Zhang X, Liu J, Gao L (2011) Effects of summer cover crop and residue management on cucumber growth in intensive Chinese production systems: soil nutrients, microbial properties and nematodes. Plant Soil 339(1–2):299–315. https://doi.org/10.1007/s11104-010-0579-8

    CAS  Article  Google Scholar 

  63. USDA (2018) Fresh apples, grapes, and pears: world markets and trade. United States Department of Agriculture Publishing PhysicsWeb. https://downloads.usda.library.cornell.edu/usda-esmis/files/1z40ks800/f7623p438/cf95jn34d/fruit_-_circular.pdf. Accessed 5 Jul 2020

  64. USDA (2019) Fresh deciduous fruit: world markets and trade (apples, grapes & pears). United States Department of Agriculture Publishing PhysicsWeb. https://apps.fas.usda.gov/psdonline/circulars/fruit.pdf. Accessed 5 Jul 2020

  65. Wang Y, Shao M, Liu Z, Zhang C (2015a) Characteristics of dried soil layers under apple orchards of different ages and their applications in soil water managements on the loess plateau of China. Pedosphere 25(4):546–554. https://doi.org/10.1016/S1002-0160(15)30035-7

    Article  Google Scholar 

  66. Wang Y, Weng B, Ye J, Zhong Z, Huang Y (2015b) Carbon sequestration in a nectarine orchard as affected by green manure in China. Eur J Hortic Sci 80(5):208–215. https://doi.org/10.17660/eJHS.2015/80.5.2

    Article  Google Scholar 

  67. Wang J, Huang J, Zhao X, Wu P, Horwath WR, Li H, Jing Z, Chen X (2016) Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degrad Dev 27(1):35–42. https://doi.org/10.1002/ldr.2334

    Article  Google Scholar 

  68. Wang ST, Wang YN, Cao KQ (2018a) Occurrence of and research progress in important apple diseases in China in recent years. Plant Prot 44(5):13–25+50. https://doi.org/10.16688/j.zwbh.2018300

    Article  Google Scholar 

  69. Wang XY, Guo YE, Feng X, Shi Y, Duan TY (2018b) Effect of arbuscular mycorrhiza and a grass endophyte on the drought tolerance of perennial ryegrass. Pratacult Sci 35(2):380–390

    Google Scholar 

  70. Wang L, Zhang K, Zhang CG, Feng YZ, Wu GF (2019) Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep. Appl Microbiol Microbiome 9:19620. https://doi.org/10.1038/s41598-019-56206-3

    CAS  Article  Google Scholar 

  71. Whitelaw-Weckert MA, Rahman L, Hutton RJ, Coombes N (2007) Permanent swards increase soil microbial counts in two Australian vineyards. Appl Soil Ecol 36(2–3):224–232. https://doi.org/10.1016/j.apsoil.2007.03.003

    Article  Google Scholar 

  72. Xu GH, Bao SD, Shi RH (1991) Research on the potassium supply of soils IV. Utilization of soil interlayer potassium by graminaceous and leguminous crops. J Nanjing Agric Univ 14(2):47–52

    CAS  Google Scholar 

  73. Yan ZC, Li YD, Cheng WJ, Gao P, Guo YE, Duan TY (2018) Effects of AM fungi and grass endophyte on the growth of ryegrass under different salt concentrations. Grassland Turf 38(1):63–70. https://doi.org/10.13817/j.cnki.cyycp.2018.01.010

    Article  Google Scholar 

  74. Yim B, Nitt H, Wrede A, Jacquiod S, Sørensen SJ, Winkelmann T, Smalla K (2017) Effects of soil pre-treatment with basamid® granules, Brassica juncea, Raphanus sativus, and Tagetes patula on bacterial and fungal communities at two apple replant disease sites. Front Microbiol 8:1604. https://doi.org/10.3389/fmicb.2017.01604

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang X (2015) Mechanism with leaf traits in alfalfa responding to drought stress. Dissertation, Lanzhou University

  76. Zhang XM (2017) Productivity, water and nitrogen use under spring wheat-forage crops rotation in the Longdong loess plateau. Dissertation, Lanzhou University

  77. Zhang LL (2018) Species diversity and drought resistance of dark septate endophytes in the rhizospheres of different plants in Anxi extreme ari desert. Dissertation, Hebei University

  78. Zhang WT, Liu GZ, Zhang M, Dong ST, Chen JQ, Liu WL, Yang XY, Yin ZH (2017) Effects of controlled-release potassium fertilizers on the yield of maize, potassium use efficiency and soil available potassium. J Soil Water Conserv 31(4):241–247. https://doi.org/10.13870/j.cnki.stbcxb.2017.04.038

    Article  Google Scholar 

  79. Zhang Q, Yu EJ, Lin HB, Zhang AH, Chen ZG, Zhu Q, Cao WD, Zhu DY (2019) Soil aggregate characteristics in topsoil layer under continuity planting same green manure crop. South China J Agric Sci 32(1):148–153. https://doi.org/10.16213/j.cnki.scjas.2019.1.024

    Article  Google Scholar 

  80. Zhong Z, Huang X, Feng D, Xing S, Weng B (2018) Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure. Agric Ecosyst Environ 268:24–33. https://doi.org/10.1016/j.agee.2018.09.001

    CAS  Article  Google Scholar 

  81. Zhou ZB, Li PJ (2003) Ecological distribution of soil microorganism in artificial greenbelt in hinterland of Takilimakan Desert and their relations with soil factors. Chin J Appl Ecol 14(8):1246–1250

    Google Scholar 

  82. Zhou Y, Zhu H, Fu S, Yao Q (2017) Variation in soil microbial community structure associated with different legume species is greater than that associated with different grass species. Front Microbiol 8:1007. https://doi.org/10.3389/fmicb.2017.01007

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhou WF, Zhu YY, Zhang XF (2019) Determination of organic matter content in soil. Henan Sci 37(2):270–274

    Google Scholar 

  84. Zhu Y, Saltzgiver M (2020) A systematic analysis of apple root resistance traits to Pythium ultimum infection and the underpinned molecular regulations of defense activation. Hortic Res 7(1):62. https://doi.org/10.1038/s41438-020-0286-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by China Modern Agriculture Research System (CARS-22 Green Manure).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tingyu Duan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Three green manure crops decreased soil K content in apple orchard.

• Green manure increased or had no effects on soil water content and soil pH.

• Green manure increased the relative abundance of Glomeromycota and the accumulation of specific genera.

• Green manure is beneficial to favorer the establishment of abundant and diverse soil fungal communities.

Supplementary Information

ESM 1

(DOCX 137 kb)

ESM 2

(JPG 199 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Yan, Z., Zhang, W. et al. Green Manure Crops Affected Soil Chemical Properties and Fungal Diversity and Community of Apple Orchard in the Loess Plateau of China. J Soil Sci Plant Nutr (2021). https://doi.org/10.1007/s42729-021-00424-0

Download citation

Keywords

  • Orchard-green manure
  • Soil fungi
  • High-throughput sequencing
  • Diversity
  • Fungal community composition