A New Approach in Agronomic Biofortification for Improving Zinc and Iron Content in Chickpea (Cicer arietinum L.) Grain with Simultaneous Foliar Application of Zinc Sulphate, Ferrous Sulphate and Urea

Abstract

The investigation was undertaken with the aim of studying the effect of individual and tank mix applications of zinc sulphate (ZnSO4), ferrous sulphate (FeSO4) and urea on zinc (Zn) and iron (Fe) biofortification of chickpea. A field experiment was conducted in 2015–2016 and 2016–2017 with treatments comprising individual and tank mix applications of ZnSO4 (0.5%), FeSO4 (0.5%) and urea (2%) at flowering and pod formation stages along with control (no nutrient application). Tank mix foliar application of ZnSO4 (0.5%) + FeSO4 (0.5%) + urea (2%) resulted in similar Zn (44.01 and 43.01 mg Zn kg−1 grain in the first and second year of study) and Fe (71.08 and 73.91 mg Fe kg−1 grain) content as in case of individual application of these nutrients (45.08 and 45.00 mg Zn kg−1 and 71.41 and 74.16 mg Fe kg−1 grain) thus showing a positive impact over unsprayed control (25.08 and 25.53 mg Zn kg−1 and 47.58 and 48.66 mg Fe kg−1 grain). Addition of urea (2%) helped in further improvement of Zn and Fe contents over ZnSO4 (0.5%) + FeSO4 (0.5%) spray only. Both tank mix application and individual application of these nutrients recorded significantly higher grain yield and protein content over sole application and control. Tank mix application of ZnSO4 (0.5%), FeSO4 (0.5%) and urea (2%) at flowering and pod formation stages of chickpea is a new method of biofortification which improves Zn and Fe contents and needs a special attention for improving malnutrition in humans.

This is a preview of subscription content, access via your institution.

References

  1. Aciksoz BS, Yazicici A, Ozturk L, Cakmak I (2011) Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 349:215–225. https://doi.org/10.1007/s11104-011-0863-2

    CAS  Article  Google Scholar 

  2. Alshaal T, El-Ramady H (2017) Foliar application: from plant nutrition to biofortification. Environ Biodiversity Soil Secur 1:71–83. https://doi.org/10.21608/jenvbs.2017.1089.1006

    Article  Google Scholar 

  3. Alvarez-Fernandez A, Garcia-Lavina P, Fidalgo C, Abadia J, Abadia A (2004) Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Plant Soil 263:5–15. https://doi.org/10.1023/b:plso.0000047717.97167.d4

    CAS  Article  Google Scholar 

  4. Andreini C, Banci L, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178. https://doi.org/10.1021/PR0603699

    CAS  Article  PubMed  Google Scholar 

  5. Balachandar D, Nagarajan P, Gunasekaran S (2003) Effect of organic amendments and micronutrients on nodulation and yield of blackgram in acid soil. Legume Res 26:192–195

    Google Scholar 

  6. Bhatt R, Hossain A, Sharma P (2020) Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: a review. Open Agric 5:176–187. https://doi.org/10.1515/opag-2020-0018

    Article  Google Scholar 

  7. Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Bio 23:281–289. https://doi.org/10.1016/j.jtemb.2009.05.002

    CAS  Article  Google Scholar 

  8. Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20. https://doi.org/10.1094/CCHEM-87-1-0001

    CAS  Article  Google Scholar 

  9. Caputo C, Barneix AJ (1997) Export of amino acids to the phloem in relation to N supply in wheat. Physiol Plant 101:853–860. https://doi.org/10.1111/j.1399-3054.1997.tb01073.x

    CAS  Article  Google Scholar 

  10. Cheema HS, Singh B (1991) Software statistical CPCS-1. Department of Statistics, Punjab Agricultural University, Ludhiana

  11. Cochran WG, Cox GM (1967) Experimental designs. Asia Publishing House, New Delhi

  12. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1–like transporters. Annals Bot 103:1–11. https://doi.org/10.1093/aob/mcn207

    CAS  Article  Google Scholar 

  13. Da Silva PM, Tsai SM, Bonetti R (1993) Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.). Plant Soil 152:123–130

    Article  Google Scholar 

  14. Darnton-Hill I, Webb P, Harvey PWJ, Hunt JM, Dalmiya N, Chopra M, Ball MJ, Bloem MW, de Benoist B (2005) Micronutrient deficiencies and gender: social and economic costs. Am J Clinical Nutr 81:1198S–1205S. https://doi.org/10.1093/ajcn/81.5.1198

    CAS  Article  Google Scholar 

  15. De N, Singh R (2010) Effect of biofertilizer on nodulation of pea in an alluvial soil. J Food Leg 23:50–53

    Google Scholar 

  16. de Valenca AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Secur 12:8–14. https://doi.org/10.1016/J.GFS.2016.12.001

    Article  Google Scholar 

  17. Dong S, Neilsen D, Neilsen GH, Fuchigami LH (2005) Foliar N application reduces soil NO3 – N leaching loss in apple orchards. Plant Soil 268:357–366. https://doi.org/10.1007/s11104-004-0333-1

    CAS  Article  Google Scholar 

  18. Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root-to shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448. https://doi.org/10.1111/j.1469-8137.2010.03488.x

    CAS  Article  PubMed  Google Scholar 

  19. Ghasemi S, Khoshgoftarmanesh AH, Afyuni M, Hadadzadeh H (2013) The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. Eur J Agron 45:68–74. https://doi.org/10.1016/J.eja.2012.10.012

    CAS  Article  Google Scholar 

  20. Gibson RS (2012) Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant Soil 361:291–299. https://doi.org/10.1007/s11104-012-1209-4

    CAS  Article  Google Scholar 

  21. Grusak MA, Pearson JN, Marentes E (1999) The physiology of micronutrient homeostasis in field crops. Field Crops Res 60:41–56. https://doi.org/10.1016/S0378-4290(98)00132-4

    Article  Google Scholar 

  22. Gupta N, Ram H, Kumar B (2016) Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotechnol 15:89–109. https://doi.org/10.1007/s11157-016-9390-1

  23. Gupta S, Brazier AKM, Lowe NM (2020) Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Human Nutr Diet 33:624–643. https://doi.org/10.1111/jhn.12791

  24. Habib M (2012) Effect of supplementary nutrition with Fe, Zn chelates and urea on wheat quality and quantity. Afr J Biotechnol 11:2661–2665. https://doi.org/10.5897/ajb11.1762

    CAS  Article  Google Scholar 

  25. Haslett BS, Teid RJ, Rengel Z (2001) Zinc mobility in wheat: uptake and distribution of zinc applied on leaves or roots. Ann Bot 87:379–389. https://doi.org/10.1006/anbo.2000.1349

    CAS  Article  Google Scholar 

  26. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506. https://doi.org/10.1111/j.1469-8137.2007.02051.x

    CAS  Article  PubMed  Google Scholar 

  27. Imran M, Rehim A (2017) Zinc fertilization approaches for agronomic biofortification and estimated human bioavailability of zinc in maize grain. Arch Agron Soil Sci 63:106–116. https://doi.org/10.1080/03650340.2016.1185660

    CAS  Article  Google Scholar 

  28. Isaac RA, Kerber JD (1971) Atomic absorption and flame photometry: techniques and uses in soil, plant and water analysis. In: Walsh LM (ed) Instrumental methods for analysis of soil and plant tissues. Soil Science Society of America, Madison, pp 17–37

    Google Scholar 

  29. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt Ltd. New Delhi

  30. Jangir CK, Kumar S, Lakhran H, Meena RS (2017) Towards mitigating malnutrition in pulses through biofortification. Trends Biosci 10:2999–3002

    Google Scholar 

  31. Jin Z, Minyan W, Lianghuan W, Jiangguo W, Chunhai S (2008) Impacts of combination of foliar iron and boron application on iron biofortification and nutritional quality of rice grain. J Plant Nutr 31:1599–1611. https://doi.org/10.1080/01904160802244803

    CAS  Article  Google Scholar 

  32. Krebs NF, Miller LV, Hambridge KM (2014) Zinc deficiency in infants and children: a review of its complex and synergistic interactions. Paediatr Int Child Health 34:279–288. https://doi.org/10.1179/2046905514Y.0000000151

    Article  PubMed  Google Scholar 

  33. Krężel A, Maret W (2016) The biological inorganic chemistry of zinc ions. Arch Biochem Biophys 611:3–19. https://doi.org/10.1016/j.abb.2016.04.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Kruger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069. https://doi.org/10.1074/jbc.M201896200

    CAS  Article  PubMed  Google Scholar 

  35. Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9. https://doi.org/10.1094/CCHEM-87-1-0001

    CAS  Article  Google Scholar 

  36. Kutman UB, Yildiz B, Cakmak I (2011) Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 342:149–164. https://doi.org/10.1007/s11104-010-0679-5

    CAS  Article  Google Scholar 

  37. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    CAS  Article  Google Scholar 

  38. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  39. Merwin HD, Peech M (1951) Exchangeability of soil potassium in the sand, silt, and clay fractions as influenced by the nature of the complementary exchangeable cation. Soil Sci Soc Am J 15:125–128

    CAS  Article  Google Scholar 

  40. Morgounov A, Gomez-Becerram HF, Abugalieva A (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203. https://doi.org/10.1007/S10681-006-9321-2

    Article  Google Scholar 

  41. Muneta GM, Florence M, Michael JW, Martin RB, Lark RM, Paul M (2020) Nitrogen effect on zinc biofortification of maize and cowpea in Zimbabwean smallholder farms. Agron J 112:2256–2274. https://doi.org/10.1002/agj2.20175

    CAS  Article  Google Scholar 

  42. Nagesh VR, Babu GU, Rani TD, Surekha RK, Reddy DVV (2013) Association of grain iron and zinc content with yield in high yielding rice cultivars. Oryza 50:41–44

    Google Scholar 

  43. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Cir No 939:1–19

  44. Pal V, Singh G, Dhaliwal SS (2019a) Agronomic biofortification of chickpea with zinc and iron through application of zinc and urea. Commun Soil Sci Plant Anal 50:1864–1877. https://doi.org/10.1080/00103624.2019.1648490

    CAS  Article  Google Scholar 

  45. Pal V, Singh G, Dhaliwal SS (2019b) Yield enhancement and biofortification of chickpea (Cicer arietinum L.) grain with iron and zinc through foliar application of ferrous sulfate and urea. J Plant Nutr 42:1789–1802. https://doi.org/10.1080/01904167.2019.1648675

    CAS  Article  Google Scholar 

  46. Pal V, Singh G, Dhaliwal SS (2020) Symbiotic parameters, growth, productivity and profitability of chickpea as influenced by zinc sulphate and urea application. J Soil Sci Plant Nutr 20:738–750. https://doi.org/10.1007/s42729-019-00161-5

    CAS  Article  Google Scholar 

  47. Pathak GC, Gupta B, Pandey N (2012) Improving reproductive efficiency of chickpea by foliar application of zinc. Braz J Plant Physiol 24:173–180. https://doi.org/10.1590/S1677-04202012000300004

    CAS  Article  Google Scholar 

  48. Persson DP, deBang TC, Pedas PR, Kutman UB, Cakmak I, Andersen B (2016) Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol 211:1255–1263. https://doi.org/10.1111/nph.13989

    CAS  Article  PubMed  Google Scholar 

  49. Pervaiz Z, Hussain K, Kazmi SSH, Gill KH, Sheikh AA (2003) Iron requirement of barani wheat. Int J Agric Biol 5:608–610

    CAS  Google Scholar 

  50. Piper CS (1966) Soil and plant analysis. Inter Science Publishers Inc., New York

  51. Ramzan Y, Hafeez MB, Khan S, Khan S, Nadeem M, Rahman S, Batool S, Ahmad J (2020) Biofortification with zinc and iron improves the grain quality and yield of wheat crop. Int J Plant Prod 14:501–510. https://doi.org/10.1007/s42106-020-00100-w

    Article  Google Scholar 

  52. Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM (2011) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795. https://doi.org/10.1093/aob/mcr205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Rietra RP, Heinen M, Dimkpa CO, Bindraban PS (2017) Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun Soil Sci Plant Anal 48:1895–1920. https://doi.org/10.1080/00103624.2017.1407429

    CAS  Article  Google Scholar 

  54. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24. https://doi.org/10.7831/ras.3.1

    Article  Google Scholar 

  55. Rubio-Covarrubias OA, Brown PH, Weinbaum SA, Johnson RS, Cabrera RI (2009) Evaluating foliar nitrogen compounds as indicators of nitrogen status in Prunus persica trees. Sci Hortic (Amsterdam) 120:27–33. https://doi.org/10.1016/J.scienta.2008.09.007

    CAS  Article  Google Scholar 

  56. Schmidke I, Stephan UW (1995) Transport of metal micronutrients in the phloem of castor bean (Ricinus communis) seedlings. Physiol Plant 95:147–153. https://doi.org/10.1111/j.1399-3054.1995.tb00821

    CAS  Article  Google Scholar 

  57. Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Römheld V, Zou CQ (2010) Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci 51:165–170. https://doi.org/10.1016/J.JCS.2009.11.008

    CAS  Article  Google Scholar 

  58. Singh MV (2008) Micronutrient deficiencies in crops and soils in India. In: Micronutrient deficiencies in global crop production (Ed BJ Alloway). Springer, Berlin, pp. 93–125. https://doi.org/10.1007/978-1-4020-6860-7_4

  59. Singh KK, Praharaj CS, Choudhary AK, Kumar N, Venkatesh MS (2011) Zinc response in pulses. Indian J Fertil 7:118–126

    CAS  Google Scholar 

  60. Sosulski FW, Imafidon GI (1990) Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. J Agric Food Chem 38:1351–1356. https://doi.org/10.1021/JF00096A011

    CAS  Article  Google Scholar 

  61. Stein AJ (2014) Rethinking the measurement of undernutrition in a broader health context: should we look at possible causes or actual effects? Glob Food Secur 3:193–199. https://doi.org/10.1016/J.GFS.2014.09.003

    Article  Google Scholar 

  62. Subbiah BV, Asija GL (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  63. Swietlik D, Faust M (1984) Foliar nutrition of fruit crops. Hortic Rev Am Soc Hortic Sci 6:287–356. https://doi.org/10.1002/9781118060797.CH8

    Article  Google Scholar 

  64. Wang S, Li M, Tian X, Li J, Li H, Ni Y, Zhao J, Chen Y, Guo C, Zhao A (2015) Foliar zinc, nitrogen, and phosphorus application effects on micronutrient concentrations in winter wheat. Agron J 107:61–70. https://doi.org/10.2134/agronj14.0414

    CAS  Article  Google Scholar 

  65. Wang S, Li M, Liu K, Tian X, Li S, Chen Y, Jia Z (2017) Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality. PLoS One 12:1–15. https://doi.org/10.1371/journal.pone.0181276

    CAS  Article  Google Scholar 

  66. Waters BM, Grusak MA (2008) Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol 177:389–405. https://doi.org/10.1111/j.1469-8137.2007.02288.x

    CAS  Article  PubMed  Google Scholar 

  67. Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum L.) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274. https://doi.org/10.1093/jxb/erp257

    CAS  Article  PubMed  Google Scholar 

  68. Wei Y, Shohag MJI, Yang X, Yibin Z (2012) Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. J Agric Food Chem 60:11433–11439. https://doi.org/10.1021/JF3036462

    CAS  Article  PubMed  Google Scholar 

  69. WHO (2015) The global prevalence of anaemia in 2011. World Health Organization, Geneva

  70. Witte CP, Tiller SA, Taylor MA, Davies HV (2002) Leaf urea metabolism in potato. Urease activity profile and patterns of recovery and distribution of 15N after foliar urea application in wild-type and urease-antisense transgenics. Plant Physiol 128:1129–1136. https://doi.org/10.1104/pp.010506

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236. https://doi.org/10.1111/j.1469-8137.2005.01597.x

    CAS  Article  PubMed  Google Scholar 

  72. Yassen A, Abou El-Nour EAA, Shedeed S (2010) Response of wheat to foliar spray with urea and micronutrients. J Am Sci 6:14–22

    Google Scholar 

  73. Zou C, Du Y, Rashid A, Ram H, Savasli E, Pieterse PJ, Ortiz-Monasterio I, Yazici A, Kaur C, Mahmood K, Singh S, Le Roux MR, Kuang W, Onder O, Kalayci M, Cakmak I (2019) Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J Agric Food Chem 67:8096–8106. https://doi.org/10.1021/acs.jafc.9b01829

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Punjab Agricultural University, Ludhiana, India, for providing necessary facilities during the research work.

Funding

This study was funded by the Indian Council of Agricultural Research, New Delhi, India (ICAR-7).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guriqbal Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pal, V., Singh, G. & Dhaliwal, S.S. A New Approach in Agronomic Biofortification for Improving Zinc and Iron Content in Chickpea (Cicer arietinum L.) Grain with Simultaneous Foliar Application of Zinc Sulphate, Ferrous Sulphate and Urea. J Soil Sci Plant Nutr (2021). https://doi.org/10.1007/s42729-021-00408-0

Download citation

Keywords

  • Grain yield
  • Tank mix
  • Iron
  • Nitrogen
  • Zinc