Plant Species Rather than Elevated Atmospheric CO2 Impact Rhizosphere Properties and Phosphorus Fractions in a Phosphorus-Deficient Soil

Abstract

By 2050, elevated atmospheric CO2 (eCO2) could stimulate plant growth, but dwindling phosphorus (P) stocks in the soil could limit growth. However, little is known about how eCO2 could affect soil P availability and dynamics in P-poor soils. Here, we conducted a 6-week pot experiment where three plant species were grown in a low-P soil under ambient (390 ppm) and eCO2 (700 ppm) to investigate plant growth, rhizosphere properties, and changes in soil P fractions. Our results showed that under P deficiency, plant biomass, P uptake, and rhizosphere properties did not respond to eCO2. Changes were noted by plant species. Compared to the control soil (unplanted pots), rhizosphere pH decreased the most under wheat, while microbial biomass P was higher under blue lupin. Among plant species, the blue lupin rhizosphere exhibited higher acid and alkaline phosphatase activity as well as organic anion release. Soil P fractions were impacted by plant species but similar across CO2 treatments. Blue lupin accumulated labile organic P while depleted moderately labile organic P. Accumulation of labile organic P could be ascribed to microbial P immobilisation, whereas the mineralization of moderately labile organic P was associated with higher phosphatase activity. Wheat depleted acid extractable inorganic P the most, probably due to soil acidification and higher root biomass. These results suggest that plants can mobilise different P fractions irrespective of their chemical availability using morphological and/or physiological adaptations. However, these adaptations to acquire P from a low-P soil were not affected by eCO2. This implies that current P fertiliser recommendations to boost or maintain crop production in low-P soils would remain unchanged under future eCO2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Achat DL, Morel C, Bakker MR, Augusto L, Pellerin S, Gallet-Budynek A, Gonzalez M (2010) Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model. Soil Biol Biochem 42:2231–2240. https://doi.org/10.1016/j.soilbio.2010.08.023

    CAS  Article  Google Scholar 

  2. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review. New Phytol 165:351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x

    Article  PubMed  Google Scholar 

  3. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

    CAS  Article  PubMed  Google Scholar 

  4. Allard V, Robin C, Newton PCD, Lieffering M, Soussana JF (2006) Short and long-term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biol Biochem 38:1178–1187. https://doi.org/10.1016/j.soilbio.2005.10.002

    CAS  Article  Google Scholar 

  5. Almeida JPF, Lüscher A, Frehner M, Oberson A, Nösberger J (1999) Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilisation. Plant Soil 210:159. https://doi.org/10.1023/A:1004625801141

    CAS  Article  Google Scholar 

  6. Barrett DJ, Richardson AE, Gifford RM (1998) Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus. Funct Plant Biol 25:87. https://doi.org/10.1071/PP97045

    CAS  Article  Google Scholar 

  7. Bhattacharya A (2019) Chapter 5 - Changing environmental condition and phosphorus-use efficiency in plants. In: Bhattacharya A (ed) Changing climate and resource use efficiency in plants. Academic Press, pp 241–305. https://doi.org/10.1016/B978-0-12-816209-5.00005-2

  8. Bhattacharyya P, Roy KS, Dash PK, Neogi S, Shahid M, Nayak AK, Raja R, Karthikeyan S, Balachandar D, Rao KS (2014) Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). Eur J Agron 53:28–37. https://doi.org/10.1016/j.eja.2013.10.008

    CAS  Article  Google Scholar 

  9. Blakemore LC, Searle PL, Daly B (1982) Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report 80. NZ Soil Bureau, Lower Hutt

    Google Scholar 

  10. Boitt G, Tian J, Black A, Wakelin SA, Condron LM (2018) Effects of long-term irrigation on soil phosphorus under temperate grazed pasture. Eur J Soil Sci 69:95–102. https://doi.org/10.1111/ejss.12512

    CAS  Article  Google Scholar 

  11. Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329. https://doi.org/10.1016/0038-0717(82)90001-3

    CAS  Article  Google Scholar 

  12. Campbell CD, Sage RF (2002) Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin (Lupinus albus L.). Plant Cell Environ 25:1051–1059. https://doi.org/10.1046/j.1365-3040.2002.00883.x

    Article  Google Scholar 

  13. Charlton JFL, Stewart AV (1999) Pasture species and cultivars used in New Zealand - a list. Proc N Z Grassl Assoc 147–166. https://doi.org/10.33584/jnzg.1999.61.2328

  14. Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol Biochem 34:487–499. https://doi.org/10.1016/S0038-0717(01)00207-3

    CAS  Article  Google Scholar 

  15. Chen YL, Dunbabin VM, Diggle AJ, Siddique KHM, Rengel Z (2013) Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop Pasture Sci 64:588–599. https://doi.org/10.1071/CP13012

    CAS  Article  Google Scholar 

  16. Cheng L, Tang X, Vance CP, White PJ, Zhang F, Shen J (2014) Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot 65:2995–3003. https://doi.org/10.1093/jxb/eru135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Condron LM, Cornforth IS, Davis MR, Newman RH (1996) Influence of conifers on the forms of phosphorus in selected New Zealand grassland soils. Biol Fertil Soils 21:37–42. https://doi.org/10.1007/BF00335991

    Article  Google Scholar 

  18. Condron LM, Newman S (2011) Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J Soils Sediments 11:830–840. https://doi.org/10.1007/s11368-011-0363-2

    CAS  Article  Google Scholar 

  19. Condron LM, Tiessen H (2005) Interactions of organic phosphorus in terrestrial ecosystems. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CABI, Wallingford

    Google Scholar 

  20. Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. Phosphorus:87–121. https://doi.org/10.2134/agronmonogr46.c4

  21. Cordain L (1999) Cereal grains: humanity’s double-edged sword. In: Simopoulos AP (ed) World review of nutrition and dietetics. KARGER, Basel, pp 19–73

    Google Scholar 

  22. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  23. Cordell D, White S (2015) Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Sec 7:337–350. https://doi.org/10.1007/s12571-015-0442-0

    Article  Google Scholar 

  24. Delucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997) Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann Bot 79:111–120. https://doi.org/10.1006/anbo.1996.0320

    CAS  Article  Google Scholar 

  25. Deng Q, Hui D, Luo Y, Elser J, Wang Y-P, Loladze I, Zhang Q, Dennis S (2015) Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 96:3354–3362. https://doi.org/10.1890/15-0217.1

    Article  PubMed  Google Scholar 

  26. Dick WA, Tabatabai MA (1977) An alkaline oxidation method for determination of total phosphorus in soils 1. Soil Sci Soc Am J 41:511–514. https://doi.org/10.2136/sssaj1977.03615995004100030015x

    CAS  Article  Google Scholar 

  27. do Nascimento CAC, Pagliari PH, Schmitt D, He Z, Waldrip H (2015) Phosphorus concentrations in sequentially fractionated soil samples as affected by digestion methods. Sci Rep 5:17967. https://doi.org/10.1038/srep17967

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB (2020) Global patterns of terrestrial nitrogen and phosphorus limitation. Nat Geosci 13:221–226. https://doi.org/10.1038/s41561-019-0530-4

    CAS  Article  Google Scholar 

  29. Edwards EJ, McCaffery S, Evans JR (2005) Phosphorus status determines biomass response to elevated CO2 in a legume : C4 grass community. Glob Chang Biol 11:1968–1981. https://doi.org/10.1111/j.1365-2486.2005.1049.x

    Article  Google Scholar 

  30. Finkel OM, Salas-González I, Castrillo G, Spaepen S, Law TF, Teixeira PJPL, Jones CD, Dangl JL (2019) The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biol 17:e3000534. https://doi.org/10.1371/journal.pbio.3000534

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Gentile R, Dodd M, Lieffering M, Brock SC, Theobald PW, Newton PCD (2012) Effects of long-term exposure to enriched CO2 on the nutrient-supplying capacity of a grassland soil. Biol Fertil Soils 48:357–362. https://doi.org/10.1007/s00374-011-0616-7

    CAS  Article  Google Scholar 

  32. George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS, Bol R, Cabugao KG, Celi L, Cotner JB, Feng G, Goll DS, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson AE, Tamburini F, Shand CA, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Mezeli MM, Almås ÅR, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley CA, Bruulsema TW, Ciais P, Cozzolino V, Duran PC, Mora ML, de Menezes AB, Dodd RJ, Dunfield K, Engl C, Frazão JJ, Garland G, González Jiménez JL, Graca J, Granger SJ, Harrison AF, Heuck C, Hou EQ, Johnes PJ, Kaiser K, Kjær HA, Klumpp E, Lamb AL, Macintosh KA, Mackay EB, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón CP, Nelson LA, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith AC, Smits MM, Sobarzo JA, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth PM (2018) Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil 427:191–208. https://doi.org/10.1007/s11104-017-3391-x

    CAS  Article  Google Scholar 

  33. Gerke J (2015) The acquisition of phosphate by higher plants: effect of carboxylate release by the roots. A critical review. J Plant Nutr Soil Sci 178:351–364. https://doi.org/10.1002/jpln.201400590

    CAS  Article  Google Scholar 

  34. Gerke J, Meyer U (1995) Phosphate aquisition by red clover and black mustard on a humic podzol. J Plant Nutr 18:2409–2429. https://doi.org/10.1080/01904169509365074

    CAS  Article  Google Scholar 

  35. Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221. https://doi.org/10.1016/j.soilbio.2007.03.014

    CAS  Article  Google Scholar 

  36. He Z, Honeycutt CW (2005) A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates. Commun Soil Sci Plant Anal 36:1373–1383. https://doi.org/10.1081/CSS-200056954

    CAS  Article  Google Scholar 

  37. Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations 1. Soil Sci Soc Am J 46:970–976. https://doi.org/10.2136/sssaj1982.03615995004600050017x

    CAS  Article  Google Scholar 

  38. Heuck C, Weig A, Spohn M (2015) Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biol Biochem 85:119–129. https://doi.org/10.1016/j.soilbio.2015.02.029

    CAS  Article  Google Scholar 

  39. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. https://doi.org/10.1023/A:1013351617532

    CAS  Article  Google Scholar 

  40. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. https://doi.org/10.1007/s11104-008-9885-9

    CAS  Article  Google Scholar 

  41. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59. https://doi.org/10.1023/A:1022371130939

    CAS  Article  Google Scholar 

  42. Hocking PJ (2001) Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plants in acid soils. In: Advances in Agronomy. Academic Press, pp 63–97. https://doi.org/10.1016/S0065-2113(01)74031-X

  43. Hou E, Luo Y, Kuang Y, Chen C, Lu X, Jiang L, Luo X, Wen D (2020) Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat Commun 11:637. https://doi.org/10.1038/s41467-020-14492-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Huang W, Zhou G, Liu J, Duan H, Liu X, Fang X, Zhang D (2014) Shifts in soil phosphorus fractions under elevated CO2 and N addition in model forest ecosystems in subtropical China. Plant Ecol 215:1373–1384. https://doi.org/10.1007/s11258-014-0394-z

    Article  Google Scholar 

  45. IPCC (2014) Climate change 2014 impacts, adaptation, and vulnerability. Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

    Google Scholar 

  46. Jakobsen I, Leggett ME, Richardson AE (2005) Rhizosphere microorganisms and plant phosphorus uptake. Phosphorus:437–494. https://doi.org/10.2134/agronmonogr46.c14

  47. Jiang M, Caldararu S, Zhang H, Fleischer K, Crous KY, Yang J, Kauwe MGD, Ellsworth DS, Reich PB, Tissue DT, Zaehle S, Medlyn BE (2020) Low phosphorus supply constrains plant responses to elevated CO2: a meta-analysis. Global Change Biology 26:5856–5873. https://doi.org/10.1111/gcb.15277

    Article  PubMed  Google Scholar 

  48. Jin J, Armstrong R, Tang C (2017) Long-term impact of elevated CO2 on phosphorus fractions varies in three contrasting cropping soils. Plant Soil 419:257–267. https://doi.org/10.1007/s11104-017-3344-4

    CAS  Article  Google Scholar 

  49. Jin J, Tang C, Armstrong R, Butterly C, Sale P (2013) Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil 368:315–328. https://doi.org/10.1007/s11104-012-1516-9

    CAS  Article  Google Scholar 

  50. Jin J, Tang C, Armstrong R, Sale P (2012) Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol. Plant Soil 358:91–104. https://doi.org/10.1007/s11104-012-1270-z

    CAS  Article  Google Scholar 

  51. Jin J, Tang C, Robertson A, Franks AE, Armstrong R, Sale P (2014) Increased microbial activity contributes to phosphorus immobilization in the rhizosphere of wheat under elevated CO2. Soil Biol Biochem 75:292–299. https://doi.org/10.1016/j.soilbio.2014.04.019

    CAS  Article  Google Scholar 

  52. Jin J, Tang C, Sale P (2015) The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann Bot 116:987–999. https://doi.org/10.1093/aob/mcv088

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2009) Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biol Biochem 41:1111–1116. https://doi.org/10.1016/j.soilbio.2009.02.016

    CAS  Article  Google Scholar 

  54. Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44. https://doi.org/10.1023/A:1004356007312

    CAS  Article  Google Scholar 

  55. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. https://doi.org/10.1007/s11104-009-9925-0

    CAS  Article  Google Scholar 

  56. Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 169–198

    Google Scholar 

  57. Jones MB, Lazenby A (eds) (1988) The grass crop. Springer Netherlands, Dordrecht 

  58. Khan FN, Lukac M, Turner G, Godbold DL (2008) Elevated atmospheric CO2 changes phosphorus fractions in soils under a short rotation poplar plantation (EuroFACE). Soil Biol Biochem 40:1716–1723. https://doi.org/10.1016/j.soilbio.2008.02.008

    CAS  Article  Google Scholar 

  59. Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114. https://doi.org/10.1016/j.pbi.2015.05.003

    CAS  Article  PubMed  Google Scholar 

  60. Lagomarsino A, Moscatelli MC, Hoosbeek MR, De Angelis P, Grego S (2008) Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant Soil 308:131–147. https://doi.org/10.1007/s11104-008-9614-4

    CAS  Article  Google Scholar 

  61. Lal MK, Vengavasi K, Pandey R (2019) Interactive effects of low phosphorus and elevated CO2 on root exudation and nutrient uptake in wheat is modified under sulphur nutrition. Plant Physiol Rep 24:63–73. https://doi.org/10.1007/s40502-019-0433-9

    CAS  Article  Google Scholar 

  62. Lam SK, Chen D, Norton R, Armstrong R (2012) Does phosphorus stimulate the effect of elevated [CO2] on growth and symbiotic nitrogen fixation of grain and pasture legumes? Crop Pasture Sci 63:53. https://doi.org/10.1071/CP11296

    CAS  Article  Google Scholar 

  63. Lambers H (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713. https://doi.org/10.1093/aob/mcl114

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100:263–288. https://doi.org/10.3732/ajb.1200474

    CAS  Article  PubMed  Google Scholar 

  65. Lambin EF, Geist H (eds) (2006) Land-use and land-cover change: local processes and global impacts. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  66. Li Y-F, Luo A-C, Wei X-H, Yao X-G (2008) Changes in phosphorus fractions, pH, and phosphatase activity in rhizosphere of two rice genotypes. Pedosphere 18:785–794. https://doi.org/10.1016/S1002-0160(08)60074-0

    CAS  Article  Google Scholar 

  67. Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol 25:3578–3590. https://doi.org/10.1111/gcb.14781

    Article  PubMed  Google Scholar 

  68. Liao D, Zhang C, Li H, Lambers H, Zhang F (2020) Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil. Plant Soil 448:587–601. https://doi.org/10.1007/s11104-020-04460-0

    CAS  Article  Google Scholar 

  69. Liu H, Wang R, Wang H, Cao Y, Dijkstra FA, Shi Z, Cai J, Wang Z, Zou H, Jiang Y (2019) Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe. Biogeosciences 16:4293–4306. https://doi.org/10.5194/bg-16-4293-2019

    CAS  Article  Google Scholar 

  70. Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697. https://doi.org/10.1104/pp.112.208298

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. PNAS 108:3086–3091. https://doi.org/10.1073/pnas.1010808108

    Article  PubMed  Google Scholar 

  72. Manoj-Kumar SA, Patra AK, Purakayastha TJ, Manjaiah KM, Rakshit R (2011) Elevated CO2 and temperature effects on phosphorus dynamics in rhizosphere of wheat (Triticum aestivum L.) grown in a typic haplustept of subtropical India. Agrochimica 55:314–331

    CAS  Google Scholar 

  73. Margenot AJ, Nakayama Y, Parikh SJ (2018) Methodological recommendations for optimizing assays of enzyme activities in soil samples. Soil Biol Biochem 125:350–360. https://doi.org/10.1016/j.soilbio.2017.11.006

    CAS  Article  Google Scholar 

  74. Marschener H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crop Res 56:203–207. https://doi.org/10.1016/S0378-4290(97)00131-7

    Article  Google Scholar 

  75. Marschner H (1995) The soil-root interface (rhizosphere) in relation to mineral nutrition. In: Mineral nutrition of higher plants, 2nd edn. Academic Press, London, pp 537–595

    Google Scholar 

  76. McDowell RW, Condron LM (2012) Phosphorus and the Winchmore trials: review and lessons learnt. N Z J Agric Res 55:119–132. https://doi.org/10.1080/00288233.2012.662899

    CAS  Article  Google Scholar 

  77. McDowell RW, Condron LM (2000) Chemical nature and potential mobility of phosphorus in fertilized grassland soils. Nutr Cycl Agroecosyst 57:225–233. https://doi.org/10.1023/A:1009838424935

    Article  Google Scholar 

  78. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    CAS  Article  Google Scholar 

  79. Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, Dangour AD, Huybers P (2017) Climate change and global food systems: potential impacts on food security and undernutrition. Annu Rev Public Health 38:259–277. https://doi.org/10.1146/annurev-publhealth-031816-044356

    Article  PubMed  Google Scholar 

  80. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 215–243

    Google Scholar 

  81. Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  82. Nash DM, Haygarth PM, Turner BL, Condron LM, McDowell RW, Richardson AE, Watkins M, Heaven MW (2014) Using organic phosphorus to sustain pasture productivity: a perspective. Geoderma 221–222:11–19. https://doi.org/10.1016/j.geoderma.2013.12.004

    CAS  Article  Google Scholar 

  83. Niu Y, Chai R, Dong H, Wang H, Tang C, Zhang Y (2013) Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms. EXBOTJ 64:355–367. https://doi.org/10.1093/jxb/ers341

    CAS  Article  Google Scholar 

  84. Norby RJ, O’Neill EG, Hood WG, Luxmoore RJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3:203–210. https://doi.org/10.1093/treephys/3.3.203

    CAS  Article  PubMed  Google Scholar 

  85. Norisada M, Motoshige T, Kojima K, Tange T (2006) Effects of phosphate supply and elevated CO2 on root acid phosphatase activity in Pinus densiflora seedlings. J Plant Nutr Soil Sci 169:274–279. https://doi.org/10.1002/jpln.200520558

    CAS  Article  Google Scholar 

  86. Oburger E, Jones DL (2018) Sampling root exudates – mission impossible? Rhizosphere 6:116–133. https://doi.org/10.1016/j.rhisph.2018.06.004

    Article  Google Scholar 

  87. Ochoa-Hueso R, Hughes J, Delgado-Baquerizo M, Drake JE, Tjoelker MG, Piñeiro J, Power SA (2017) Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant Soil 416:283–295. https://doi.org/10.1007/s11104-017-3212-2

    CAS  Article  Google Scholar 

  88. Olsen SR, Sommers LE (1982) Determination of available phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, pp 403–430

    Google Scholar 

  89. O’Sullivan JB, Jin J, Tang C (2020) Elevated CO2 promotes the acquisition of phosphorus in crop species differing in physiological phosphorus-acquiring mechanisms. Plant Soil 455:397–408. https://doi.org/10.1007/s11104-020-04698-8

    CAS  Article  Google Scholar 

  90. Pandey R, Dubey KK, Ahmad A, Nilofar R, Verma R, Jain V, Zinta G, Kumar V (2015a) Elevated CO2 improves growth and phosphorus utilization efficiency in cereal species under sub-optimal phosphorus supply. J Plant Nutr 38:1196–1217. https://doi.org/10.1080/01904167.2014.983116

    CAS  Article  Google Scholar 

  91. Pandey R, Lal MK, Vengavasi K (2018) Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus. Plant Cell Rep 37:1231–1244. https://doi.org/10.1007/s00299-018-2307-4

    CAS  Article  PubMed  Google Scholar 

  92. Pandey R, Zinta G, AbdElgawad H, Ahmad A, Jain V, Janssens IA (2015b) Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol Adv 33:303–316. https://doi.org/10.1016/j.biotechadv.2015.03.011

    CAS  Article  PubMed  Google Scholar 

  93. Pang J, Bansal R, Zhao H, Bohuon E, Lambers H, Ryan MH, Ranathunge K, Siddique KHM (2018a) The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol 219:518–529. https://doi.org/10.1111/nph.15200

    CAS  Article  PubMed  Google Scholar 

  94. Pang J, Ryan MH, Lambers H, Siddique KH (2018b) Phosphorus acquisition and utilisation in crop legumes under global change. Curr Opin Plant Biol 45:248–254. https://doi.org/10.1016/j.pbi.2018.05.012

    CAS  Article  PubMed  Google Scholar 

  95. Pang J, Yang J, Lambers H, Tibbett M, Siddique KHM, Ryan MH (2015) Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiol Plant 154:511–525. https://doi.org/10.1111/ppl.12297

    CAS  Article  PubMed  Google Scholar 

  96. Parr WV, Valentin D, Breitmeyer J, Peyron D, Darriet P, Sherlock R, Robinson B, Grose C, Ballester J (2016) Perceived minerality in sauvignon blanc wine: chemical reality or cultural construct? Food Res Int 87:168–179. https://doi.org/10.1016/j.foodres.2016.06.026

    CAS  Article  PubMed  Google Scholar 

  97. Pastore G, Kaiser K, Kernchen S, Spohn M (2020) Microbial release of apatite- and goethite-bound phosphate in acidic forest soils. Geoderma 370:114360. https://doi.org/10.1016/j.geoderma.2020.114360

    CAS  Article  Google Scholar 

  98. Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MDA, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190. https://doi.org/10.1111/j.1469-8137.2006.01897.x

    CAS  Article  PubMed  Google Scholar 

  99. Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139. https://doi.org/10.1007/s11104-006-9099-y

    CAS  Article  Google Scholar 

  100. Perrott KW, Mansell GP (1989) Effect of fertiliser phosphorus and liming on inorganic and organic soil phosphorus fractions. N Z J Agric Res 32:63–70. https://doi.org/10.1080/00288233.1989.10423478

    Article  Google Scholar 

  101. Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol 39:839–850. https://doi.org/10.1071/FP12049

    Article  PubMed  Google Scholar 

  102. Radersma S, Grierson PF (2004) Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 259:209–219. https://doi.org/10.1023/B:PLSO.0000020970.40167.40

    CAS  Article  Google Scholar 

  103. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693. https://doi.org/10.1146/annurev.arplant.50.1.665

    CAS  Article  PubMed  Google Scholar 

  104. Raghothama KG (2005) Phosphorus and plant nutrition: an overview. Phosphorus:355–378. https://doi.org/10.2134/agronmonogr46.c11

  105. Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124. https://doi.org/10.1071/CP07125

    CAS  Article  Google Scholar 

  106. Rose TJ, Hardiputra B, Rengel Z (2010) Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil 326:159–170. https://doi.org/10.1007/s11104-009-9990-4

    CAS  Article  Google Scholar 

  107. Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71. https://doi.org/10.1111/j.1747-0765.2007.00210.x

    CAS  Article  Google Scholar 

  108. Sandaña P, Pinochet D (2016) Phosphorus acquisition of wheat, pea and narrow-leafed lupin under different P supplies. J Soil Sci Plant Nutr 16:537–549. https://doi.org/10.4067/S0718-95162016005000044

    Article  Google Scholar 

  109. Shi S, Condron L, Larsen S, Richardson AE, Jones E, Jiao J, O’Callaghan M, Stewart A (2011) In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus radiata) grown in a rhizotron system. Environ Exp Bot 70:131–142. https://doi.org/10.1016/j.envexpbot.2010.08.010

    CAS  Article  Google Scholar 

  110. Singh Gahoonia T, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57. https://doi.org/10.1023/B:PLSO.0000030168.53340.bc

    CAS  Article  Google Scholar 

  111. Singh SK, Badgujar G, Reddy VR, Fleisher DH, Bunce JA (2013) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J Plant Physiol 170:801–813. https://doi.org/10.1016/j.jplph.2013.01.001

    CAS  Article  PubMed  Google Scholar 

  112. Singh SK, Reddy VR (2014) Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis, and nutrient efficiency of cotton. J Plant Nutr Soil Sci 177:892–902. https://doi.org/10.1002/jpln.201400117

    CAS  Article  Google Scholar 

  113. Soares JC, Santos CS, Carvalho SMP, Pintado MM, Vasconcelos MW (2019) Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant Soil 443:1–26. https://doi.org/10.1007/s11104-019-04229-0

    CAS  Article  Google Scholar 

  114. Spohn M (2020) Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Glob Chang Biol 26:4169–4177. https://doi.org/10.1111/gcb.15154

    Article  PubMed  Google Scholar 

  115. Spohn M, Kuzyakov Y (2013) Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – coupling soil zymography with 14C imaging. Soil Biol Biochem 67:106–113. https://doi.org/10.1016/j.soilbio.2013.08.015

    CAS  Article  Google Scholar 

  116. Spohn M, Widdig M (2017) Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability. Soil Biol Biochem 113:53–59. https://doi.org/10.1016/j.soilbio.2017.05.017

    CAS  Article  Google Scholar 

  117. Tabatabai MA (1994) Soil enzymes. In: Mickelson SH, Bigham JM (eds) Methods of soil analysis: part 2—microbiological and biochemical properties. Soil Science Society of America, Madison, pp 775–833

    Google Scholar 

  118. Tang C, Rengel Z (2003) Role of plant cation/anion uptake ratio in soil acidification. In: Rengel Z (ed) Handbook of Soil Acidity. CRC Press, Boca Raton, pp 57–81

  119. Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C, Vicca S, Fisher JB, Reich PB, Stocker BD, Hungate BA, Peñuelas J, McCallum I, Soudzilovskaia NA, Cernusak LA, Talhelm AF, van Sundert K, Piao S, Newton PCD, Hovenden MJ, Blumenthal DM, Liu YY, Müller C, Winter K, Field CB, Viechtbauer W, van Lissa CJ, Hoosbeek MR, Watanabe M, Koike T, Leshyk VO, Polley HW, Franklin O (2019) Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat Clim Chang 9:684–689. https://doi.org/10.1038/s41558-019-0545-2

    CAS  Article  Google Scholar 

  120. Tfaily MM, Hess NJ, Koyama A, Evans RD (2018) Elevated [CO2] changes soil organic matter composition and substrate diversity in an arid ecosystem. Geoderma 330:1–8. https://doi.org/10.1016/j.geoderma.2018.05.025

    CAS  Article  Google Scholar 

  121. Tian J, Lu X, Chen Q, Kuang X, Liang C, Deng L, Lin D, Cai K, Tian J (2020) Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils. Plant Soil. https://doi.org/10.1007/s11104-020-04662-6

  122. Tiessen H, Stewart JWB, Moir JO (1983) Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60–90 years of cultivation. J Soil Sci 34:815–823. https://doi.org/10.1111/j.1365-2389.1983.tb01074.x

    CAS  Article  Google Scholar 

  123. Touhami D, McDowell RW, Condron LM (2020a) Role of organic anions and phosphatase enzymes in phosphorus acquisition in the rhizospheres of legumes and grasses grown in a low phosphorus pasture soil. Plants 9:1185. https://doi.org/10.3390/plants9091185

    CAS  Article  PubMed Central  Google Scholar 

  124. Touhami D, McDowell RW, Condron LM, Lieffering M, Newton PCD (2020b) Long-term atmospheric carbon dioxide enrichment decreases soil phosphorus availability in a grazed temperate pasture. Geoderma 378:114621. https://doi.org/10.1016/j.geoderma.2020.114621

    CAS  Article  Google Scholar 

  125. Turner B, Cademenun B, Condron L, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306. https://doi.org/10.1016/j.talanta.2004.11.012

    CAS  Article  PubMed  Google Scholar 

  126. Valentinuzzi F, Cesco S, Tomasi N, Mimmo T (2015) Influence of different trap solutions on the determination of root exudates in Lupinus albus L. Biol Fertil Soils 51:757–765. https://doi.org/10.1007/s00374-015-1015-2

    CAS  Article  Google Scholar 

  127. Velásquez G, Ngo P-T, Rumpel C, Calabi-Floody M, Redel Y, Turner BL, Condron LM, Mora M d l L (2016) Chemical nature of residual phosphorus in Andisols. Geoderma 271:27–31. https://doi.org/10.1016/j.geoderma.2016.01.027

    CAS  Article  Google Scholar 

  128. Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197. https://doi.org/10.1023/A:1022367312851

    CAS  Article  Google Scholar 

  129. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15. https://doi.org/10.1890/08-0127.1

    Article  PubMed  Google Scholar 

  130. Vu DT, Tang C, Armstrong RD (2008) Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant Soil 304:21–33. https://doi.org/10.1007/s11104-007-9516-x

    CAS  Article  Google Scholar 

  131. Wang B, Shen J, Tang C, Rengel Z (2008) Root morphology, proton release, and carboxylate exudation in lupin in response to phosphorus deficiency. J Plant Nutr 31:557–570. https://doi.org/10.1080/01904160801895084

    CAS  Article  Google Scholar 

  132. Wang X, Tang C, Guppy CN, Sale PWG (2010) Cotton, wheat and white lupin differ in phosphorus acquisition from sparingly soluble sources. Environ Exp Bot 69:267–272. https://doi.org/10.1016/j.envexpbot.2010.04.007

    CAS  Article  Google Scholar 

  133. Wang Y, Chen X, Lu C, Huang B, Shi Y (2017a) Different mechanisms of organic and inorganic phosphorus release from Mollisols induced by low molecular weight organic acids. Can J Soil Sci. https://doi.org/10.1139/CJSS-2017-0002

  134. Wang Y, Krogstad T, Clarke JL, Hallama M, Øgaard AF, Eich-Greatorex S, Kandeler E, Clarke N (2016a) Rhizosphere organic anions play a minor role in improving crop species’ ability to take up residual phosphorus (P) in agricultural soils low in P availability. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01664

  135. Wang Y, Krogstad T, Clarke N, Øgaard AF, Clarke JL (2017b) Impact of phosphorus on rhizosphere organic anions of wheat at different growth stages under field conditions. AoB Plants 9. https://doi.org/10.1093/aobpla/plx008

  136. Wang Y, Lambers H (2020) Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil 447:135–156. https://doi.org/10.1007/s11104-019-03972-8

    CAS  Article  Google Scholar 

  137. Wang Y, Whalen JK, Chen X, Cao Y, Huang B, Lu C, Shi Y (2016b) Mechanisms for altering phosphorus sorption characteristics induced by low-molecular-weight organic acids. Can J Soil Sci 96:289–298. https://doi.org/10.1139/cjss-2015-0068

    CAS  Article  Google Scholar 

  138. Wasaki J, Ando M, Ozawa K, Omura M, Osaki M, Ito H, Matsui H, Tadano T (1997) Properties of secretory acid phosphatase from lupin roots under phosphorus-deficient conditions. Soil Sci Plant Nutr 43:981–986. https://doi.org/10.1080/00380768.1997.11863703

    CAS  Article  Google Scholar 

  139. Wasaki J, Sakaguchi J, Yamamura T, Ito S, Shinano T, Osaki M, Kandeler E (2018) P and N deficiency change the relative abundance and function of rhizosphere microorganisms during cluster root development of white lupin (Lupinus albus L.). Soil Sci Plant Nutr 64:686–696. https://doi.org/10.1080/00380768.2018.1536847

    CAS  Article  Google Scholar 

  140. Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Yamagishi M, Osaki M (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26:1515–1523. https://doi.org/10.1046/j.1365-3040.2003.01074.x

    CAS  Article  Google Scholar 

  141. Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am J 29:677–678. https://doi.org/10.2136/sssaj1965.03615995002900060025x

    CAS  Article  Google Scholar 

  142. Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716. https://doi.org/10.1104/pp.120.3.705

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. Watts-Williams SJ, Andrew Smith F, Jakobsen I (2019) Soil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonisation. Symbiosis 77:73–82. https://doi.org/10.1007/s13199-018-0573-0

    Article  Google Scholar 

  144. Wei X, Hu Y, Razavi BS, Zhou J, Shen J, Nannipieri P, Wu J, Ge T (2019a) Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol Biochem 131:62–70. https://doi.org/10.1016/j.soilbio.2018.12.025

    CAS  Article  Google Scholar 

  145. Wei X, Razavi BS, Hu Y, Xu X, Zhu Z, Liu Y, Kuzyakov Y, Li Y, Wu J, Ge T (2019b) C/P stoichiometry of dying rice root defines the spatial distribution and dynamics of enzyme activities in root-detritusphere. Biol Fertil Soils 55:251–263. https://doi.org/10.1007/s00374-019-01345-y

    CAS  Article  Google Scholar 

  146. Wu S, Feng X, Wittmeier A (1997) Microwave digestion of plant and grain reference materials in nitric acid or a mixture of nitric acid or a mixture of nitric acid and hydrogen peroxide for the determination of multi-elements by inductively coupled plasma mass spectrometry. J Anal At Spectrom 12:797–806. https://doi.org/10.1039/a607217h

    CAS  Article  Google Scholar 

  147. Yang X, Chen X, Guo E, Yang X (2019) Path analysis of phosphorus activation capacity as induced by low-molecular-weight organic acids in a black soil of Northeast China. J Soils Sediments 19:840–847. https://doi.org/10.1007/s11368-018-2034-z

    CAS  Article  Google Scholar 

  148. Zhang Y, Chen X, Zhang C, Pan G, Zhang X (2014) Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region, China. J Plant Nutr Soil Sci 177:343–348. https://doi.org/10.1002/jpln.201200526

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Stuart Larsen, the New Zealand Biotron manager, for his technical help to carry out the experiment. We also would like to express our thanks to Professor Mitchell Andrews from Lincoln University for providing guidance during the experiment. We express our gratitude to Joy Jiao from Lincoln University for HPLC analyses.

Funding

Mohammed VI Polytechnic University of Benguerir and the Office Cherifien des Phosphates (OCP) provided financial support for this study. R.W.M. was supported by the Our Land and Water National Science Challenge (contract C10X1507 from the Ministry of Business, Innovation and Employment).

Author information

Affiliations

Authors

Contributions

D.T., L.M.C., and R.W.M. contributed to the study conception and design. D.T. carried out the experiment and collected and analysed the data. D.T. wrote the first draft of the manuscript, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Driss Touhami.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Touhami, D., Condron, L.M. & McDowell, R.W. Plant Species Rather than Elevated Atmospheric CO2 Impact Rhizosphere Properties and Phosphorus Fractions in a Phosphorus-Deficient Soil. J Soil Sci Plant Nutr 21, 622–636 (2021). https://doi.org/10.1007/s42729-020-00388-7

Download citation

Keywords

  • Phosphorus deficiency
  • Elevated CO2
  • Climate change
  • Phosphorus fractions
  • Phosphatase activity
  • Organic anion release