Fecundity and life-table parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on tomato crop under alternating temperature regimes: implications for pest monitoring in sub-tropical India

Abstract

Constant temperatures influencing the biological traits of Helicoverpa armigera (Hübner) is widely documented. However, information was lacking on impact of alternating temperatures on population growth of H. armigera on tomato crop. The impact of 6 different alternating temperatures (ATs) viz. 25:10, 25:13, 25:16, 30:10, 30:13, 30:16°C were studied on its life table parameters on tomato crop inside the climatic chamber. Only 7–13% eggs of H. armigera developed successfully into their respective adults under treated ATs. The immature development period and mean generation time shortened by 36.7 and 35.7%, respectively with enhancement in AT from 25:10–30:16°C. ATs viz. 25:13, 25:16 and 30:10°C favoured the higher oviposition (554.83–625 eggs/female) of female H. armigera. Fitting closely to observed values, the total fecundity (TF) model predicted 21.0°C as the favourable temperature for maximum fecundity (591.3 eggs /female). Under 30:10°C, H. armigera attained maximum intrinsic (0.05635 day−1) and finite rate of increase (1.0579 day−1) on tomato crop. The methodology involving law of effective accumulated temperatures estimated that H. armigera may complete 2 generations in a tomato growing season. These results can assist in planning sustainable pest management modules in preventing potential pest outbreaks and associated economic losses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abarca M, Larsen EA, Lill JT, Weiss M, Lind E, Ries L (2018) Inclusion of host quality data improves predictions of herbivore phenology. Entomol Exp Appl 166:648–660

    Article  Google Scholar 

  2. Armes NJ, Bond GS, Cooter RJ (1992) The laboratory culture and development of Helicoverpa armigera. Natural Resources Institute, Chatham

    Google Scholar 

  3. Arora R, Battu GS (1996) An inexpensive oviposition cage for Helicoverpa armigera (Hubner). Annals of Plant Protection Science 4:169–170

    Google Scholar 

  4. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  5. Banerjee MK, Kallo G (1989) Role of phenols in resistance to tomato leaf curl virus, Fusarium wilt and Fruit borer in Lycopersicon. Curr Sci 58:575–576

    CAS  Google Scholar 

  6. Bartekova A, Praslicka J (2006) The effect of ambient temperature on the development of cotton bollworm (Helicoverpa armigera Hübner, 1808). Plant Prot Sci 42:135–138

    Article  Google Scholar 

  7. Birch L (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Article  Google Scholar 

  8. Carey JR (1993) Applied demography for biologists: with special emphasis on insects. Oxford University Press, New York

    Google Scholar 

  9. Casimero V, Tsukuda R, Nakasuji F, Fujisaki K (2000) Effect of larval diets on the survival and development of larvae in the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Appl Entomol Zool 35:69–74

    Article  Google Scholar 

  10. Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bulletin of institute of Zoology, Academia Sinica 24:225–240

    Google Scholar 

  11. Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34

  12. Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Cunningham JP, Zalucki MP (2014) Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? J Econ Entomol 107:881–896

    PubMed  Article  Google Scholar 

  14. Dhandapani N, Balasubramanian M (1980) Effect of different food plants on the development and reproduction of Heliothis armigera (Hbn.). Experientia 36:930–931

    Article  Google Scholar 

  15. Fand BB, Sul NT, Bal SK, Minhas PS (2015) Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One 10:e0124682

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Fitt GP (1989) The ecology of Heliothis species in relation to agroecosystems. Annu Rev Entomol 34:17–53

    Article  Google Scholar 

  17. Foley DH (1981) Pupal development rate of Heliothis armigera (hubner) (Lepidoptera: noctuidae) under constant and alternating temperatures. Aust J Entomol 20:13–20

    Article  Google Scholar 

  18. Garcia FM (2006) Analysis of the Spatio–temporal Distribution of Helicoverpa armigera Hb. in a Tomato Field using a Stochastic Approach. Biosys Eng 93:253–259

    Article  Google Scholar 

  19. Garg N, Cheema DS (2011) Assessment of fruit quality attributes of tomato hybrids involving ripening mutants under high temperature conditions. Sci Hortic 131:29–38

    Article  Google Scholar 

  20. Gomes ES, Santos V, Ávila CJ (2017) Biology and fertility life table of Helicoverpa armigera (Lepidoptera: Noctuidae) in different hosts. Entomol Sci 20:419–426

    Article  Google Scholar 

  21. Hagstrum DW, Milliken GA (1991) Modeling differences in insect developmental times between constant and fluctuating temperatures. Ann Entomol Soc Am 84:369–379

    Article  Google Scholar 

  22. Hemati SA, Naseri B, Nouri Ganbalani G, Rafiee Dastjerdi H, Golizadeh A (2012) Effect of Different Host Plants on Nutritional Indices of the Pod Borer. J Insect Sci 12(55):1–15

    Article  Google Scholar 

  23. Huang YB, Chi H (2012) Life tables of Bactrocera cucurbitae (Diptera: Tephritidae) with an invalidation of the jackknife technique. J Appl Entomol 137:327–339

    Article  Google Scholar 

  24. Jallow MF, Matsumura M (2001) Influence of temperature on the rate of development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Appl Entomol Zool 36:427–430

    Article  Google Scholar 

  25. Jallow MF, Matsumura M, Suzuki Y (2001) Oviposition preference and reproductive performance of Japanese Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Appl Entomol Zool 36:419–426

    Article  Google Scholar 

  26. Jaworski T, Hilszczański J (2013) The effect of temperature and humidity changes on insects development their impact on forest ecosystems in the expected climate change. For Res Pap 74:345–355

    Google Scholar 

  27. Karban R, Strauss SY (2004) Physiological tolerance, climate change, and a northward range shift in the spittlebug, Philaenus spumarius. Ecol Entomol 29:251–254

    Article  Google Scholar 

  28. Khokhar S, Rolania K, Singh G, Kumar A (2019) Influence of prevailing weather parameters on population dynamics of fruit borer, Helicoverpa armigera (Hübner) on tomato in Haryana. J Agrometeorol 21:193–196

    Google Scholar 

  29. Kim DS, Lee JH (2003) Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol Model 162:145–153

    Article  Google Scholar 

  30. Krebs CJ (1972) Ecology: the experimental analysis of distribution and abundance. Harper and Row, New York

    Google Scholar 

  31. Lange WH, Bronson L (1981) Insect pests of tomatoes. Annu Rev Entomol 26:345–371

    Article  Google Scholar 

  32. Li LT, Wang YQ, Ma JF, Liu L, Hao YT, Dong C, Gan YJ, Dong ZP, Wang QY (2013) The effects of temperature on the development of the moth Athetis lepigone, and a prediction of field occurrence. J Insect Sci. https://doi.org/10.1673/031.013.10301

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu SS, Zhang GM, Zhu JUN (1995) Influence of temperature variations on rate of development in insects: analysis of case studies from entomological literature. Ann Entomol Soc Am 88:107–119

    Article  Google Scholar 

  34. Liu Z, Gong P, Wu K, Wei W, Sun J, Li D (2007) Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J Insect Physiol 53:1016–1026

    CAS  PubMed  Article  Google Scholar 

  35. Liu Z, Li D, Gong P, Wu K (2004) Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Environ Entomol 33:1570–1576

    Article  Google Scholar 

  36. Ludhiana weather (2014) https://weather.com/en-IN/weather/monthly/l/INXX0193:1:IN (Accessed 26 July 2018)

  37. Mironidis GK, Savopoulou-Soultani M (2008) Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ Entomol 37:16–28

    CAS  PubMed  Article  Google Scholar 

  38. Mironidis GK (2014) Development, survivorship and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under fluctuating temperatures. Bull Entomol Res 104:751–764

    PubMed  Article  Google Scholar 

  39. Mohammed HQ, Murai T, Yoshida H, Shiraga T, Tsumuki H (1999) Effects of photoperiod and temperature on development and diapause induction on the Okayama population of Helicoverpa armigera (Hb.) (Lepidoptera: Noctuidae). Appl Entomol Zool 34:327–331

    Article  Google Scholar 

  40. Mohite AS, Charde PN, Dahegaonkar JS, Dorlikar AV (2011) Temperature effects on the rate of development of life stages of gram pod borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Indian J Entomol 73:237–240

    Google Scholar 

  41. Nicola S, Tibaldi G, Fontana E, Crops AV, Plants A (2009) Tomato production systems and their application to the tropics. Proc. IS on tomato in the tropics. Acta Hort 821:27–33

    Article  Google Scholar 

  42. Noor-ul-Ane M, Kim DS, Zalucki MP (2018) Fecundity and egg laying in Helicoverpa armigera (Lepidoptera: Noctuidae): model development and field validation. J Econ Entomol 111:2208–2216

    PubMed  Article  Google Scholar 

  43. Nyambo BT (1988) Significance of host-plant phenology in the dynamics and pest incidence of the cotton bollworm, Heliothis armigera Hübner (Lepidoptera: Noctuidae), in Western Tanzania. Crop protection 7:161–167

    Article  Google Scholar 

  44. Nylin S (2001) Life history perspectives on pest insects: What’s the use? Austral Ecol 26:507–517

    Article  Google Scholar 

  45. Odum EP, Barrett GW (1971) Fundamentals of ecology. Saunders, Philadelphia

    Google Scholar 

  46. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ (1999) Pole ward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    CAS  Article  Google Scholar 

  47. PAU (2018) Package of Practices for Cultivation of Vegetables. Punjab Agricultural University, Ludhiana

    Google Scholar 

  48. Portilla M, Morales-Ramos JA, Rojas MG, Blanco CA (2014) Life tables as tools of evaluation and quality control for arthropod mass production. In: Morales-Ramos JA, Rojas MG (eds) Mass production of beneficial organisms. Academic Press, San Diego, pp 241–275

    Google Scholar 

  49. Pratissoli D, Lima VL, Pirovani VD, Lima WL (2015) Occurrence of Helicoverpa armigera (Lepidoptera: Noctuidae) on tomato in the Espírito Santo state. Hortic Bras 33:101–105

    Article  Google Scholar 

  50. Quieroz-Santos L, Casagrande MM, Specht A (2018) Molecular characterization of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae: Heliothinae). Neotrop Entomol 47:517–542

    Article  Google Scholar 

  51. Rabindra RJ, Philip SR, Sundarababu PC, Gopalan M (1997) Technology for mass production of biopesticides. Center for plant protection studies, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  52. Rajapakse CNK, Walter GH (2007) Polyphagy and primary host plants: oviposition preference versus larval performance in the lepidoteran pest Helicoverpa armigera. Arthropod Plant Interact 1:17–26

    Article  Google Scholar 

  53. Ramalho FS, Malaquias JB, Lira AC, Oliveira FQ, Zanuncio JC, Fernandes FS (2015) Temperature-dependent fecundity and life table of the fennel aphid Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae). PLoS One. https://doi.org/10.1371/journal.pone.0122490

    Article  PubMed  PubMed Central  Google Scholar 

  54. Romeis J, Shanower TG (1996) Arthropod natural enemies of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India. Biocontrol Sci Tech 6:481–508

    Article  Google Scholar 

  55. Safuraie-Parizi S, Fathipour Y, Talebi AA (2014) Evaluation of tomato cultivars to Helicoverpa armigera using two-sex life table parameters in laboratory. J Asia Pac Entomol 17:837–844

    Article  Google Scholar 

  56. Scientific J (1996) Table Curve 2D Software. San Rafael, CA. Available from https://systatsoftware.com/products/tablecurve-2d/

  57. Sharma HC, Srivastava CP, Durairaj C, Gowda CLL (2010) Pest management in grain legumes and climate change. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 115–139

    Google Scholar 

  58. Sharma SK, Chaudhary OP (1988) Effect of different levels of constant temperature and humidity on the development and survival of Heliothis armigera. Indian J Entomol 50:76–81

    Google Scholar 

  59. Selvanarayanan V, Narayanasamy P (2006) Factors of resistance in tomato accessions against the fruit worm, Helicoverpa armigera (Hubner). Crop Protection 25(10):1075–1079

    Article  Google Scholar 

  60. Singh N, Dotasara SK, Jat SM, Naqvi AR (2017) Assessment of crop losses due to tomato fruit borer, Helicoverpa armigera in tomato. J Entomol Zool Stud 5:595–597

    Google Scholar 

  61. Southwood TRE (1978) The sampling programme and the measurement and description of dispersion. In: Southwood TRE (ed) Ecological methods:with particular reference to insect population. Chapman and Hall, London, pp 7–69

    Google Scholar 

  62. SPSS 23.0 (2015) IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp. Available from https://www.ibm.com/in-en/products/spss-statistics/pricing

  63. Tewari GC, Krishna Moorthy PN (1984) Yield loss in tomato caused by fruit-borer. Indian J Agric Sci 54:341–343

    Google Scholar 

  64. Van Lenteren JCV, Noldus LPJJ (1990) Whitefly-plant relationships: behavioural and ecological aspects. In D. Gerling (Ed.), Whiteflies: their bionomics, pest status and management ( pp.49), Hants: Intercept press

  65. Wada T, Kobayashi M (1980) Effects of temperature on development of the rice leaf roller, Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae). Appl Entomol Zool 15:207–214

    Article  Google Scholar 

  66. Wakil W, Ghazanfar MU, Kwon YJ, Qayyum MA, Nasir F (2010) Distribution of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in tomato fields and its relationship to weather factors. Entomol Res 40:290–297

    Article  Google Scholar 

  67. Wu K, Yuping C, Minghui L (1993) Performances of the cotton bollworm, Heliothis armigera (Hübner) at different temperatures and relative humidities. J Environ Sci 5:158–168

    Google Scholar 

  68. Xing K, Hoffmann AA, Zhao F, Ma CS (2019) Wide diurnal temperature variation inhibits larval development and adult reproduction in the diamondback moth. J Therm Biol 84:8–15

    PubMed  Article  Google Scholar 

  69. Xiuzhen L, Kunjun W, Peiyu G (1993) Effects of alternating temperature on development and reproduction of the armyworm, Mythimna separata (Walker). J Environ Sci 5:186–193

    Google Scholar 

  70. Zalucki MP, Daglish G, Firempong S, Twine P (1986) The biology and ecology of Heliothis armigera (Hubner) and Heliothis punctigera Wallengren (Lepidoptera, Noctuidae) in Australia-What do we know. Aust J Zool 34:779–814

    Article  Google Scholar 

  71. Zitsanza ES, Giga DP, Knight JD (2006) Oviposition site preferences by Helicoverpa armigera (Lepidoptera: Noctuidae): effect of season and density on distribution of eggs on plants. S Afr J Plant Soil 23:138–141

    Article  Google Scholar 

  72. Zuo W, Moses ME, West GB, Hou C, Brown JH (2012) A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc Royal Soc B Biol Sci 279:1840–1846

    Google Scholar 

Download references

Acknowledgment

Authors express gratefulness to Indian Council of Agricultural Research (ICAR), New Delhi for providing junior research fellowship (ICAR-JRF).The help redendered by Prof. Dr. Hsin Chi of National Chung Hsing University, Republic of China in analysing life table parameters is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Dalal.

Ethics declarations

Conflict of Interest

Authors express no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalal, P.K., Arora, R. Fecundity and life-table parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on tomato crop under alternating temperature regimes: implications for pest monitoring in sub-tropical India. Int J Trop Insect Sci (2021). https://doi.org/10.1007/s42690-021-00467-x

Download citation

Keywords

  • Life table
  • Insect generation
  • Fecundity
  • Intrinsic rate of increase
  • Alternating temperature