Distribution and attack of pineapple mealybug to macauba palm Acrocomia aculeata

Abstract

The mealybug Dysmicoccus brevipes (Hemiptera: Pseudococcidae) is an important pest of several agricultural crops and can transmit viruses, and reduce growth and production, and lead to plant mortality. Macauba palm is an oleaginous plant whose oil can be used in the production of biodiesel, cosmetics, pharmaceuticals and in human food. In this context, the effect of mealybug insect attacks on the development and survival of this oleaginous remains little understood. The impact of D. brevipes attacks on macauba palm was verified by comparing the development of attacked and non-attacked plants. The spatial distribution pattern of D. brevipes in the areas studied (two areas) was also evaluated. The percentage of plants attacked by D. brevipes ranged from 52–54%. Attacked plants presented lower height (112.3–138.1 cm) and smaller crown diameter (136.8–173.6 cm) than non-attacked plants (187.8–191.6 cm and 234.7–246.2 cm). The spatial distribution of D. brevipes was best represented by the Spherical model. The attack range ranged from 4.4–5.5 m; distribution pattern of attacked plants was similar in the two plots with aggregate distribution and strong spatial dependence. The spatial distribution maps indicated that sampled plants and neighboring plants showed similar occurrence of D. brevipes. The pineapple mealybug is a pest insect with great capacity to cause mortality of young macauba plants, and can compromise the production and longevity of the attacked plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aguieiras EC, Cavalcanti-Oliveira ED, de Castro AM, Langone MA, Freire DM (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321. https://doi.org/10.1016/j.fuel.2014.06.069

    CAS  Article  Google Scholar 

  2. Barrigossi JA, Young LJ, Crawford CAG, Hein GL, Higley LG (2001) Spatial and probability distribution of Mexican bean beetle (Coleoptera: Coccinellidae) egg mass populations in dry bean. Environ Entomol 30:244–253. https://doi.org/10.1603/0046-225X-30.2.244

    Article  Google Scholar 

  3. Beardsley JW, Su TH, McEwen FL, Gerling D (1982) Field investigations on the interrelationships of the big-headed ant, the gray pineapple mealybug, and pineapple mealybug wilt disease in Hawaiian. Proc Hawaiian Entomol Soc 24:51–67

    Google Scholar 

  4. Ben-Dov Y (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. United Kingdon, Intercept Limited

    Google Scholar 

  5. Bertin A, Bortoli LC, Botton M, Parra JRP (2013) Host plant effects on the development, survival, and reproduction of Dysmicoccus brevipes (Hemiptera: Pseudococcidae) on grapevines. Ann Entomol Soc Am 106:604–609. https://doi.org/10.1603/AN13030

    Article  Google Scholar 

  6. Bertin A, Lerin S, Botton M, Parra J (2019) Temperature thresholds and thermal requirements for development and survival of Dysmicoccus brevipes (Hemiptera: Pseudococcidae) on Table Grapes. Neotrop Entomol 48:71–77. https://doi.org/10.1007/s13744-018-0623-6

    CAS  Article  PubMed  Google Scholar 

  7. Buckley RC (1987) Interactions involving plants, Homoptera, and ants. Annu Rev Ecol Evol Syst 18:111–135. https://www.annualreviews.org/doi/pdf/ https://doi.org/10.1146/annurev.es.18.110187.000551

  8. CABI (2015) Dysmicoccus brevipes (pineapple mealybug). Invasive species compendium. Datasheets, maps, images, abstracts and full text on invasive species of the world. http://www.cabi.org/isc/datasheet/20248 Accessed 19 May 2015

  9. Chioderoli CA, de Mello LM, Grigolli PJ, Furlani CE, Silva JO, Cesarin AL (2012) Atributos físicos do solo e produtividade de soja em sistema de consórcio milho e braquiária. Rev Bras Eng Agríc 16:37–43. http://www.scielo.br/pdf/rbeaa/v16n1/v16n01a05

  10. Ciconini G, Favaro SP, Roscoe R, Miranda CHB, Tapeti CF, Miyahira MAM, Bearari L, Galvani F, Borsato AV, Colnago LA, Naka MH (2013) Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Ind Crop Prod 45:208–214. https://doi.org/10.1016/j.indcrop.2012.12.008

    Article  Google Scholar 

  11. Cid M, Fereres A (2010) Characterization of the probing and feeding behavior of Planococcus citri (Hemiptera: Pseudococcidae) on grapevine. Ann Entomol Soc Am 103:404–417. https://doi.org/10.1603/AN09079

    Article  Google Scholar 

  12. Colen K, Santa-Cecília L, Moraes J, REIS P, (2000) Efeitos de diferentes temperaturas sobre a biologia da cochonilha pulverulenta Dysmicoccus brevipes (Cockerell, 1893)(Hemiptera: Pseudococcidae). Rev Bras Frutic 22:248–252

    Google Scholar 

  13. Costa MG, Barbosa JC, Yamamoto PT (2006) Distribuição de probabilidade de ocorrência de Orthezia praelonga Douglas (Hemiptera: Sternorrhyncha: Ortheziidae) na cultura de citros. Neotrop Entomol 35:395–401. http://www.scielo.br/pdf/%0D/ne/v35n3/30359.pdf

  14. Culik MP, Gullan PJ (2016) A new pest of tomato and other records of mealybugs (Hemiptera: Pseudococcidae) from Espirito Santo, Brazil. Zootaxa 964:1–8. https://biblioteca.incaper.es.gov.br/digital/bitstream/item/2231/1/Culik-Gullan-2005-coch-Zoot.pdf

  15. da Luz PB, Bonani JP, Santa-Cecília LVC (2005) Primeira ocorrência de Dysmicoccus brevipes (cockerell, 1893) (Hemiptera: Pseudococcidae) na palmeira Rhapis excelsa (Thunberg) Henry Ex. Rehder no Brasil. Arq Inst Biol 72:391–393. http://www.biologico.sp.gov.br/uploads/docs/arq/V72_3/luz.PDF

  16. Daane KM, Almeida RPP, Bell VA, Walker JTS, Botton M, Fallahzadeh M, Mani M, Miano JL, Sforza R, Walton VM, Zaviezo T (2012) Biology and management of mealybugs in vineyards. In: Bostanian NJ, Vincent C, Isaacs R (eds) Arthropod Management in Vineyards: Pests, Approaches, and Future Directions. Springer, Dordrecht, pp 271–307

    Google Scholar 

  17. De Carvalho LD, Neto AJS, Mendes AA, Pereira DTV (2013) Economic feasibility of biodiesel production from Macauba in Brazil. Energy Econ 40:819–824. https://doi.org/10.1016/j.eneco.2013.10.003

    Article  Google Scholar 

  18. Evaristo AB, Grossi JAS, Carneiro ADCO, Pimentel LD, Motoike SY, Kuki KN (2016) Actual and putative potentials of macauba palm as feedstock for solid biofuel production from residues. Biomass Bioenergy 85:18–24. https://doi.org/10.1016/j.biombioe.2015.11.024

    CAS  Article  Google Scholar 

  19. Gambley CF, Steele V, Geering ADW, Thomas JE (2008) The genetic diversity of ampeloviruses in Australian pineapples and their association with mealybug wilt disease. Australas Plant Pathol 37:95–105. https://doi.org/10.1071/AP07096

    CAS  Article  Google Scholar 

  20. González-Hernández H, Johnson MW, Reimer NJ (1999) Impact of Pheidole megacephala (F.) (Hymenoptera: Formicidae) on the biological control of Dysmicoccus brevipes (Cockerell) (Homoptera: Pseudococcidae). Biol Control 15:145–152. https://doi.org/10.1006/bcon.1999.0714

    Article  Google Scholar 

  21. Gumprecht D, Muller WG, Rodriguez-Diaz JM (2009) Designs for detecting spatial dependence. Geogr Anal 41:127–143. https://doi.org/10.1111/j.1538-4632.2009.00736.x

    Article  Google Scholar 

  22. Hernandez-Rodriguez L, Ramos-Gonzalez PL, Garcia-Garcia G, Zamora V, Peralta-Martin AM, Peña I, Perez JM, Ferriol X (2014) Geographic distribution of mealybug wilt disease of pineapple and genetic diversity of viruses infecting pineapple in Cuba. Crop Prot 65:43–50. https://doi.org/10.1016/j.cropro.2014.07.003

    Article  Google Scholar 

  23. Hunter AF (2000) Gregariousness and repellent defences in the survival of phytophagous insects. Oikos 91:213–224. https://doi.org/10.1034/j.1600-0706.2000.910202.x

    Article  Google Scholar 

  24. Isaaks EH, Srivastava RM (1989) An Introduction to Applied Geostatistics. Oxford University, New York

    Google Scholar 

  25. Jahn GC, Beardsley JW (2000) Interactions of ants (Hymenoptera: Formicidae) and mealybugs (Homoptera: Pseudococcidae) on pineapple. Proc Hawaiian Entomol Soc 34:161–165. http://hdl.handle.net/10125/8370

  26. Jahn GC, Beardsley JW, González-Hernández H (2003) A review of the association of ants with mealybug wilt disease of pineapple. Proc Hawaiian Entomol Soc 36:9–28. http://hdl.handle.net/10125/95

  27. Krebs CJ (1989) Ecological Methodology. Harper and Hall, New York

    Google Scholar 

  28. Lim W (1973) Studies on the bisexual race of Dysmicoccus brevipes Ckll.: its bionomics and economic importance. Malays Agric J 49:254–267

    Google Scholar 

  29. Lima NE, Carvalho AA, Meerow AW, Manfrin MH (2018) A review of the palm genus Acrocomia: Neotropical green gold. Org Divers Evol 18:151–161. https://doi.org/10.1007/s13127-018-0362-x

    Article  Google Scholar 

  30. Lopes DC, Steidle Neto AJ (2011) Potential crops for biodiesel production in Brazil: a review. World Journal of Agricultural Sciences 7:206–217. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.4414&rep=rep1&type=pdf

  31. Lorenzi EFP, Wolff VRS, Silva VCP (2016) Ocorrência de Dysmicoccus brevipes em raízes de mandioca no estado de Santa Catarina e alterações reprodutivas em função do substrato de criação. R A C 29:50–52

    Google Scholar 

  32. Mani M, Shivaraju C (2016) Mealybugs and their Management in Agricultural and Horticultural crops. Springer, New Delhi

    Google Scholar 

  33. Mgocheki N, Addison P (2009) Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol Control 49:180–185. https://doi.org/10.1016/j.biocontrol.2009.02.001

    Article  Google Scholar 

  34. Mgocheki N, Addison P (2010) Spatial distribution of ants (Hymenoptera: Formicidae), vine mealybugs and mealybug parasitoids in vineyards. J Appl Entomol 134:285–295. https://doi.org/10.1111/j.1439-0418.2009.01494.x

    Article  Google Scholar 

  35. Moghaddam M (2013) A review of the mealybugs (Hemiptera: Coccoidea: Pseudococcidae, Putoidae and Rhizoecidae) of Iran, with descriptions of four new species and three new records for the Iranian fauna. Zootaxa 3632:1–107. https://doi.org/10.11646/zootaxa.3632.1.1

  36. Morandi Filho WJ, Pacheco-da-Silva VC, Willink MC, Prado E, Botton M (2015) A survey of mealybugs infesting South-Brazilian wine vineyards. Rev Bras Entomol 59:251–254. https://doi.org/10.1016/j.rbe.2015.05.002

    Article  Google Scholar 

  37. Naidu R, Rowhani A, Fuchs M, Golino D, Martelli GP (2014) Grapevine leafroll: a complex viral disease affecting a high-value fruit crop. Plant Dis 98:1172–1185. https://doi.org/10.1094/PDIS-08-13-0880-FE

    CAS  Article  PubMed  Google Scholar 

  38. Plath M, Moser C, Bailis R, Brandt P, Hirsch H, Klein AM, von Wehrden H (2016) A novel bioenergy feedstock in Latin America? Cultivation potential of Acrocomia aculeata under current and future climate conditions. Biomass Bioenergy 91:186–195. https://doi.org/10.1016/j.biombioe.2016.04.009

    Article  Google Scholar 

  39. Rohlfs M, Hoffmeister TS (2004) Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies? Oecologia 140:654–661. https://doi.org/10.1007/s00442-004-1629-9

    Article  PubMed  Google Scholar 

  40. Rohrbach KG, Beardsley JW, German TL, Reimer NJ, Sanford WG (1988) Mealybug wilt, mealybugs, and ants of pineapple. Plant Dis 72:558–565. https://doi.org/10.1094/PD-72-0558

    Article  Google Scholar 

  41. Rosado JF, Picanço MC, Sarmento RA, Pereira RM, Pedro-Neto M, Galdino TVS, Saraiva AS, Erasmo EAL (2015) Geostatistics as a tool to study mite dispersion in physic nut plantations. Bull Entomol Res 105:381–389. https://doi.org/10.1017/S0007485315000310

    CAS  Article  PubMed  Google Scholar 

  42. Santa-Cecília LVC, Bueno VHP, Prado E (2004) Desenvolvimento de Dysmicoccus brevipes (Cockerell) (Hemiptera; Pseudococcidae) em duas cultivares de abacaxi. Cienc Agrotec 28:1015–1020. https://doi.org/10.1590/S1413-70542004000500007

    Article  Google Scholar 

  43. Santa-Cecília LVC, Prado E, Souza B (2016) Probing behavior of Dysmicoccus brevipes mealybug in pineapple plants1. Pesqui Agropecu Trop 46:458–463. https://doi.org/10.1590/1983-40632016v4642278

    Article  Google Scholar 

  44. Stafford CA, Walker GP, Ullman DE (2012) Hitching a ride: Vector feeding and virus transmission. Commun Integr Biol 5:43–49. https://doi.org/10.4161/cib.18640

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stuart RJ, Polavarapu S (2002) On the relationship between the ant, Acanthomyops claviger, and the blueberry mealybug, Dysmicoccus vaccinii. J Insect Behav 15:299–304. https://doi.org/10.1023/A:1015449303815

    Article  Google Scholar 

  46. Suma P, Mazzeo G, La Pergola A, Nucifora S, Russo A (2015) Establishment of the pineapple mealybug Dysmicoccus brevipes (Hemiptera: Pseudococcidae) in Italy. EPPO Bull 45:218–220. https://doi.org/10.1111/epp.12206

    Article  Google Scholar 

  47. Souza B, Santa-Cecília LVC, Prado E, de Souza JC (2008) Mealybugs (Pseudococcidae) on coffee (Coffea arabica L.) in Minas Gerais State, Brazil Coffee Science 3:104-107 https://doi.org/10.25186/cs.v3i2.80

Download references

Acknowledgments

We are grateful to the following Brazilian agencies: Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) for financial support. Concelho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research fellowships (SYM, MCP). Dr. Lenira Viana Costa Santa-Cecilia from the Minas Gerais Agricultural Research Corporation (Epamig), Dr. Ernesto Prado Cordero for identifying the mealybug specimens, and Dr. Danival José de Souza, from the Federal University of Tocantins for identifying the ant specimens. Mr. Phillip John Villani (B.A. from The University of Melbourne, Australia) for revising and correcting the English language used in this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Soares Ramos.

Ethics declarations

Conflict of interest

Additionally, the authors have no conflict of interest, financial or otherwise to disclose. All authors have approved the manuscript and agree with publication this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Araújo, V.C.R., Silva, G.A., Ramos, R.S. et al. Distribution and attack of pineapple mealybug to macauba palm Acrocomia aculeata. Int J Trop Insect Sci (2021). https://doi.org/10.1007/s42690-021-00456-0

Download citation

Keywords

  • Dysmicoccus brevipes
  • Spatial distribution
  • Macauba palm
  • Palm mortality