Population dynamics and economic thresholds based time series for smart pest management of sesame

Abstract

Sesame (Sesamum indicum L.) is the oldest and most important oilseed crop throughout the world. But its productivity is extremely low due to several insect pests infesting at various stages of the crop. Pest ecology and economic thresholds (ETs) based time series of six generalist pests, Diacrisia casignetum, Spilosoma obliqua, Spodoptera litura, Spilarctia luteum, Helicoverpa armigera and Plutella xylostella, were determined on sesame during 2018–2020. Their nutritional ecology and population dynamics were significantly affected by the host phytoconstituents. The ETs varied between 4-27insects/m2 for the different insects with H. armigera having the highest ET and S. obliqua with the lowest one. All the production values including benefit cost ratios (BCRs) and carbon sequestration efficiencies (CSEs) were significantly higher in control plants (without any pest) compared to infested plants regardless of insect species. Thus, crop parameters including production values and CSEs were changed according to specific pest infestation depending on their respective food utilization efficiency and population growth rate. Even, this study will also inform about the susceptibility and or severity of sesame cultivar (Rama) towards the selected pests for their judicious management by using ETs based time series to support climate smart pest management (CSPM) of sesame in near future.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    PubMed  PubMed Central  Article  Google Scholar 

  2. Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agriculture Ecos Env 99:15–27

    CAS  Article  Google Scholar 

  3. Anuga SW, Gordon C, Boon E, Surugu JMI (2019) Determinants of climate smart agriculture (CSA) adoption among smallholder food crop farmers in the techiman municipality. Ghana Ghana J Geo 11(1):124–139. https://doi.org/10.4314/gjg.v11i1.8

    Article  Google Scholar 

  4. Applebaum SW (1985) Biochemistry of digestion. In: Kerkot GA, Gillbert LI (eds) Comprehensiv insect physiology, biochemistry and pharmacology, Pergamon Press, New York, Oxford, pp. 279–311. https://doi.org/10.1016/b978-0-08-030805-0.50013-4

  5. Armes NJ, Wightman JA, Jadhav DR, Ranga RGV (1997) Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Sci 50:240–248

    CAS  Article  Google Scholar 

  6. Aryal JP, Jat ML, Sapkota TB, Chhetri AK, Kassie M, Maharjan RDB, S, (2018) Adoption of multiple climate smart agricultural practices in the Gangetic plains of Bihar, India. Int J Climate Change Strat Manag 10(3):407–427. https://doi.org/10.1108/IJCCSM-02-2017-0025

    Article  Google Scholar 

  7. Asharani NR, Prakasarao JS Annapurnamma T (1992) Effect of planting dates on phenology growth and yield of sesame cultivars (Sesamum indicum L.). J Res 20(1): 36–38

  8. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Ent 47:817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300

    CAS  Article  Google Scholar 

  9. Basavaraj K, Naik MI, Jagadish KS, Shadakshari YG (2018) Studies on age specific fecundity life tables for Helicoverpa armigera Hub., on sunflower (Helianthus annuus L.). J Ento Zool Stud 6(2): 1364–1368

  10. Bhadauria N, Yadav KS, Rajput RL, Singh VB (2012) Integrated weed management in sesame. Ind J Weed Sci 44(4):235–237

    Google Scholar 

  11. Bhagat RC (2018) Biodiversity and systematic checklist of moth caterpillars belonging to family Crambidae, Erabidae and Tortricidae, affecting host crops and plant species in Jammu & Kashmir state (India). Int J Curr Res Biosci Plant Biol 5(11): 56–67. https://doi.org/10.20546/ijcrbp.2018.511.006

  12. Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38

    CAS  PubMed  Article  Google Scholar 

  13. Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Animal Ecol 17:15–26

    Article  Google Scholar 

  14. Biswas GC, Kabir SMH, Das GP (2001) Insect pests of sesame, Sesamum indicum Linn. in Bangladesh, their succession and natural enemies. Ind J Ento 63(2):117–124

  15. Carey JR (1993) Applied demography for biologists with special emphasis on insects. Oxford University Press, New York, NY, USA, p 211

    Google Scholar 

  16. Carey JR (2001) Insect biodemography Annu Rev Ento 46:79–110. https://doi.org/10.1146/annurev.ento.46.1.79

    CAS  Article  Google Scholar 

  17. Carvalho FP (2017) Pesticides, environment, and food safety. Food Ener Secur 6(2):48–60

    Article  Google Scholar 

  18. Chávez JP, Jungmann D, Siegmund S (2018) A comparative study of integrated pest management strategies based on impulsive control. J Biol Dyn 12(1): 318–341. https://doi.org/10.1080/17513758.2018.1446551

  19. Chen Q, Li N, Wang X, Ma L, Huang J-B, Huang G-H (2017) Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS One 12(3): e0173380. https://doi.org/10.1371/journal.pone.0173380

  20. Chhetri AK, Aggarwal PK, Joshi PK, Vyas S (2017) Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agri Sys 151:184–191. https://doi.org/10.1016/j.agsy.2016.10.005

    Article  Google Scholar 

  21. Chimanshette TG, Dhoble MV (1992) Effect of sowing date and plant density on seed yield of sesame (Sesamum indicum L.) varieties. Ind J Agron 37(2): 280–282

  22. Cook SM, Khan ZR, Pickett JA (2007) The use of ‘push–pull’ strategies in integrated pest management. Annu Rev Ento 52:375–400

    CAS  Article  Google Scholar 

  23. Damalas CA, Koutroubas SD (2018) Current status and recent developments in biopesticide use. Agriculture 8(1): 13. https://doi.org/10.3390/agriculture8010013

  24. Dicke M (2000) Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective. Biochem Syst Ecol 28:601–617. https://doi.org/10.1016/S0305-1978(99)00106-4

    CAS  Article  PubMed  Google Scholar 

  25. Dutta S, Roy N (2016) Life table and population dynamics of a major pest, Leptocorisa acuta (Thunb.) (Hemiptera: Alydidae), on rice and non-rice system. Int J Pure & Applied Biosci 4(1): 199–207. https://doi.org/10.18782/2320-7051.2202

  26. Genc H, Nation JL (2004) Influence of dietary lipids on survival of Phyciodes phaon butterflies (Lepidoptera: Nymphalidae). J Entomol Sci 39:537–544

    CAS  Article  Google Scholar 

  27. Goel SC, Kumar S (1991) Efficacy of synthetic pyrethroids and quinalphos against Bihar hairy caterpillar, Spilosoma obliqua (Walker) and Sesamum sphinx, Acheron tiastyx (Westwood) infesting sesamum (Sesamum indicum L.). J Ento Res 15(1): 15–19

  28. Golizadeh A, Kamali1 K, Fathipour Y, Abbasipour H (2009) Life table of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) on five cultivated brassicaceous host plants.J Agric Sci Technol11: 115–124

  29. Gotyal BS, Selvaraj K, Meena PN, Satpathy S (2015) Host plant resistance in cultivated jute and its wild relatives towards jute hairy caterpillar Spilosoma obliqua (Lepidoptera: Arctiidae). Florida Entomol 98(2):721–727. https://doi.org/10.1653/024.098.0248

    Article  Google Scholar 

  30. Harborne JB (1973) Phytochemical methods: a guide to modern techniques of plant analysis, 2nd edn. Chapman and Hall, New York, pp 88–185

    Google Scholar 

  31. Harborne JB (1994) Introduction to Ecological Biochemistry. Academic Press, London

    Google Scholar 

  32. Heeb L, Jenner E, Cock MJW (2019) Climate-smart pest management: building resilience of farms and landscape to changing pest threats. J Pest Sci 92:951–969. https://doi.org/10.1007/s10340-019-01083-y

    Article  Google Scholar 

  33. Higley LG, Wintersteen WK (1992) A novel approach to environmental risk assessment of pesticides as a basis for incorporating environmental costs into economic injury levels. Ame Ento 38:34–39

    Article  Google Scholar 

  34. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  PubMed  Article  Google Scholar 

  35. Kakde AM, Patel KG, Tayade S (2014) Role of life table in insect pest management-a review. IOSR JAgric Vet Sci 7(1):40–43. https://doi.org/10.9790/2380-07114043

    Article  Google Scholar 

  36. Kang L (2019) Overview: biotic signalling for smart pest management. Phil Trans Royal Soci B 374:20180306. https://doi.org/10.1098/rstb.2018.0306

    CAS  Article  Google Scholar 

  37. Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Env 575:525–535

    CAS  Article  Google Scholar 

  38. Krebs CJ (1994) Ecology: the experimental analysis of distribution and abundance, 4th edn. Harper Collins College Publishers, New York

    Google Scholar 

  39. Kumar R, Ali S (2010) Efficacy of botanical pesticides against Spilarctia obliqua in Sesamum indicum. Annals Plant Prot Sci 18(1):223–224

    Google Scholar 

  40. Lal R (2008) Sequestration of atmospheric CO2 into global carbon pool. Energy Env Sci 1:86–100

    CAS  Article  Google Scholar 

  41. Lal R (2011) Sequestering carbon in soils of agro-ecosystems. Food Policy 36:33–39

    Article  Google Scholar 

  42. Liu Z, Li D, Gong P, Wu K (2004) Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Env Ento 33:1570–1576. https://doi.org/10.1603/0046-225X-33.6.1570

    Article  Google Scholar 

  43. Meena R, Singh B, Meena KC, Meena RK, Singh B Gurjar P (2018) Performance of front line demonstrations on sesame (Sesamum indicum L.) in Karauli district of Rajasthan. Int J Curr Microbiol App Sci 7(03): 1507–1511. https://doi.org/10.20546/ijcmas.2018.703.179

  44. Mobarak SH, Roy N, Barik A (2019) Two-sex life table and feeding dynamics of Spilosoma obliqua Walker (Lepidoptera: Arctiidae) on three green gram cultivars. Bull Ento Res Pp 1–13. https://doi.org/10.1017/S0007485319000452

  45. Mohapatra MM, Gupta PK (2018) Evaluation of insecticides against Bihar Hairy Caterpillar, Spilosoma obliqua Walk. on black gram, Vigna mungo (Linn.). Int J Curr Microbiol App Sci 7(6): 605–608. https://doi.org/10.20546/ijcmas.2018.706.069

  46. Nath DK (1975) Note on the insect pests of sesame (Sesamum indicum L.) of West Bengal. Ind J Agric Res 9(3):151–152

  47. Nation JL (2001) Insect physiology and biochemistry. CRC Press, Boca Raton, FL

    Google Scholar 

  48. Ndakidemi B, Mtei K, Ndakidemi PA (2016) Impacts of synthetic and botanical pesticides on beneficial insects. Agric Sci 7:364–372

    CAS  Google Scholar 

  49. Parui A, Roy N (2016) Ecofriendly and sustainable management of Spilosoma obliqua Walker on sesame (Sesamum indicum L.) crops by new botanicals. J Ento Zoo Stud 4(6): 349–354

  50. Pedigo LP, Buntin GD (1994) Handbook of sampling methods for arthropods in agriculture. CRC Press, Boca Raton, FL

    Google Scholar 

  51. Pedigo LP, Higley LG (1992) A new perspective of the economic injury level concept and environmental quality. Ame Ento 38:12–21

    Article  Google Scholar 

  52. Pedigo LP, Higley HSH, LG, (1986) Economic injury levels in theory and practice. Annu Rev Ento 31:341–368

    Article  Google Scholar 

  53. Pedigo LP, Poston FL, Welch SM (1983) Economic injury levels: reality and practicality. Bull Entomol Soc Am 29:49–53

    Google Scholar 

  54. Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agric Ecos Env 200: 33–41. https://doi.org/10.1016/j.agee.2014.10.024

  55. Price PW (1998) Insect ecology. Wiley, New York

    Google Scholar 

  56. Ricklefs RE, Miller GL (2000) Ecology, 4th edn. Freeman & Company, New York, p 822

    Google Scholar 

  57. Riley DG (2008) Economic injury level (EIL) and economic threshold (ET) concepts in pest management. In: Capinera JL (eds) Encyclopedia of Entomology. Springer, Dordrecht

  58. Rizvi P Q, Ali A, Khalid S (2009) Age and stage-specific life-table of cabbage butterfly, Pieris brassicae L. (Lepidoptera: Pieridae) on various cole crops. J Plant Protect Res 49(2): 145–150

  59. Roy N (2014) Role of Chorchorus capsularis phytochemicals on the feeding dynamics of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae). J Ento Zool Stud 2:227–236

    Google Scholar 

  60. Roy N (2015a) Host phytochemicals in regulation of nutritional ecology and population dynamics of Podontia quatuordecimpunctata L.(Coleoptera: Chrysomelidae). Int J Hort 5(4): 1–11. https://doi.org/10.5376/ijh.2015.05.0004

  61. Roy N (2015) Life table and population parameters of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae) on jute, Chorchorus capsularis (cv. Sonali; JRC-321), leaves. Int J Fauna Biol Stud 2:23–29

    Google Scholar 

  62. Roy N (2017) Life table and nutritional ecology of Epilachna vigintioctopunctata Fab. (Colioptera: Coccinellidae) on three host plants. Int J Hort 7(2): 7–19. https://doi.org/10.5376/ijh.2017.07.0002

  63. Roy N (2019a) Jute leaf physicochemical cues mediated behavioral responses of Diacrisia casignetum Kollar. Agric Res 8: 287–296. https://doi.org/10.1007/s40003-018-0362-2

  64. Roy N (2019b) Life table and economic threshold concept for ecologically sustainable management of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae) on jute. Entomon 44(2): 103–110. https://doi.org/10.33307/entomon.v44i.436

  65. Roy N (2020) Population ecology and ETs based time series for climate smart pest management of Spilosoma obliqua Walker. Entomon 45(1): 15–30. https://doi.org/10.33307

  66. Roy N, Barik A (2012) The impact of variation in foliar constituents of sunflower on development and reproduction of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae). Psyche, vol. 2012: 9 pages. https://doi.org/10.1155/2012/812091

  67. Roy N, Barik A (2013) Influence of four host plants on feeding, growth and reproduction of Diacrisia casignetum (Lepidoptera: Arctiidae). Ento Sci 16(1):112–118. https://doi.org/10.1111/j.1479-8298.2012.00546.x

    Article  Google Scholar 

  68. Roy N, Barik A (2014) Long-chain fatty acids: Semiochemicals for host location by the insect pest. Diacrisia casignetum J Kansas Entomol Soci 87(1):22–36

    Article  Google Scholar 

  69. Sagar RL, Chandra G (2004) Front line demonstration on Sesame in West Bengal. Agric Exten Rev 10:7–10

    Google Scholar 

  70. Sarfraz M, Dosdall LM, Keddie BA (2007) Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae). J Econ Ento 100:215–224

    CAS  Article  Google Scholar 

  71. Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  72. Schowalter TD (2006) Insect ecology: an ecosystem approach, 2nd edn. Academic Press, Tokyo

    Google Scholar 

  73. Scriber JM, Slansky FJr, (1981) The nutritional ecology of immature insects. Annu Rev Ento 26:183–211. https://doi.org/10.1146/annurev.en.26.010181.001151

    Article  Google Scholar 

  74. Shobana K, Murugan A, Kumar N (2010) Influence of host plants on feeding, growth and reproduction of Papilio polytes (the common mormon). J Insect Physiol 56:1065–1070. https://doi.org/10.1016/j.jinsphys.2010.02.018

    CAS  Article  PubMed  Google Scholar 

  75. Singh G, Rup PJ, Koul O (2006) Acute, sublethal and combination effects of Azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuiidae) larvae. Bull Entomol Res 97:351–357

    Article  CAS  Google Scholar 

  76. Slansky F, Scriber JM (1985) Food consumption and utilization. In: Kerkot GA, Gillbert LI (eds), Comprehensive insect physiology, biochemistry and pharmacology, Pergamon, Oxford, England, pp. 87–113. https://doi.org/10.1016/b978-0-08-030805-0.50009-2

  77. Southwood TRE (1978) Ecological methods particular reference to study of insect population. The English Language Book Society and Chapman and Hall, London, p 524

    Google Scholar 

  78. Southwood TRE, Henderson PA (2000) Ecological Methods, 3rd edn. Blackwell Science, Oxford, p 575

    Google Scholar 

  79. Subedi R, Bhatta LD, Udas E, Agrawal NK, Joshi KD, Panday D (2019) Climate-smart practices for improvement of crop yields in mid-hills of Nepal. Cogent Food Agric 5:1631026. https://doi.org/10.1080/23311932.2019.1631026

    CAS  Article  Google Scholar 

  80. Supriya GB, Singh TVK, Sunitha V, Vinod SK, Reddy CN (2018) Life Table Study of Tobacco Caterpillar Spodoptera litura (F.) (Noctuidae: Lepidoptera) on Different Bt Cotton Hybrids During 120–150 DAS (Days after Sowing). Int. J Curr Microbiol App Sci 7(6): 2367–2386. https://doi.org/10.20546/ijcmas.2018.706.283

  81. Thangjam R, Vastrad AS (2018) Studies on pest complex of sesame and their natural enemies in North Karnataka. India J Ento Zool Stud 6(6):57–60

    Google Scholar 

  82. Turunen S (1990) Plant leaf lipids as fatty acid sources in two species of Lepidoptera. J Insect Physiol 36:665–672. https://doi.org/10.1016/0022-1910(90)90071-M

    CAS  Article  Google Scholar 

  83. Waldbauer GP (1968) The consumption and utilization of food by insects. Adv Insect Physiol 5:229–288. https://doi.org/10.1016/S0065-2806

    Article  Google Scholar 

  84. Wang ZB, Zhang HL, Lu XH, Wang M, Chu QQ, Wen XY, Chen F (2016) Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J Cleaner Prod 112:149–157

    CAS  Article  Google Scholar 

  85. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defence against insect herbivores. Plant Sig Behav 7:1306–1320

    Article  Google Scholar 

  86. Warad M, Kalleshwaraswamy CM (2017) Biology of Bihar hairy caterpillar, Spilarctia obliqua (Walker) (Erebidae: Lepidoptera) on field bean. Agric Update 12(5):1256–1260

    Article  Google Scholar 

  87. Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    CAS  PubMed  Article  Google Scholar 

  88. Xue M, Pang YH, Wang HT, Li Q-L, Liu T-X (2010) Effects of four host plants on biology and food utilization of the cutworm, Spodoptera litura. J Insect Sci 10:1–14. https://doi.org/10.1673/031.010.2201

    Article  Google Scholar 

  89. Zar JH (1999) Biostatistical Analysis. Prentice Hall, Upper Saddle River, New Jersey, USA

    Google Scholar 

Download references

Acknowledgments

I wish to express my deep sense of gratitude to West Bengal Department of Science and Technology (WBDST) Project [File No.: ST/P/S&T/1G-29/2018], from Government of West Bengal, India, for financial assistance. I must acknowledge the farmers who help me in every way during my fieldwork.

Author information

Affiliations

Authors

Contributions

NR designed the whole study including sample collection, chemical analysis, index calculation, data analysis and drafts the manuscript with the help of institutional support.

Corresponding author

Correspondence to Nayan Roy.

Ethics declarations

Competing interests

The author declares that there is no competing interest other than publication of this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, N. Population dynamics and economic thresholds based time series for smart pest management of sesame. Int J Trop Insect Sci (2021). https://doi.org/10.1007/s42690-021-00437-3

Download citation

Keywords

  • Chemical regime
  • Economic threshold
  • Generalist pests
  • Nutritional ecology
  • Population dynamics
  • Sesamum indicum