Exotic pastureland is better than Eucalyptus monoculture: β-diversity responses of flower chafer beetles to Brazilian Atlantic Forest conversion

Abstract

Human activities, such as conversion and degradation of habitats, are modifying the natural ecosystems, causing biodiversity declines globally. However, the responses of many understudied biological groups are less clear. Here, we explore how spatial components of β-diversity (incidence- and abundance-based) of flower chafer beetles are influenced by land use changes. We sampled the insects using aerial fruit-baited traps weekly from September to December 2012, in five sites of Brazilian Atlantic Forest, Eucalyptus plantations and pasturelands (Urochloa spp.). We find that compositional changes of beetle assemblages are completely represented by nestedness patterns, either among or within habitats. When accounting for abundance, except for Eucalyptus sites, there are a similar contribution of change and loss of individuals among and within habitats. Within Eucalyptus sites, assemblages are completely nested in terms of species and individuals. Eucalyptus sites are a poor-homogenized subset of some disturbance-tolerant flower chafer beetle species also found in forest and open habitats (such as pastures). When resources are available, these beetles can inhabit both forest and open habitats and appear to be ‘guests’ in Eucalyptus sites, using them only when moving through space. Finally, conversion of Atlantic Forest sites into Eucalyptus causes poor-homogenized assemblages of flower chafer beetles.

This is a preview of subscription content, access via your institution.

References

  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen's climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  2. Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  PubMed  Google Scholar 

  3. Bardiani M, Tini M, Carpaneto GM et al (2017) Effects of trap baits and height on stag beetle and flower chafer monitoring: ecological and conservation implications. J Insect Conserv 21:157–168. https://doi.org/10.1007/s10841-017-9965-3

    Article  Google Scholar 

  4. Barlow J, Lennox GD, Ferreira J et al (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 7535:144–147. https://doi.org/10.1038/nature18326

    CAS  Article  Google Scholar 

  5. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  6. Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x

    Article  Google Scholar 

  7. Baselga A (2017) Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods Ecol Evol 8:799–808. https://doi.org/10.1111/2041-210X.12693

    Article  Google Scholar 

  8. Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x

    Article  Google Scholar 

  9. Beiroz W, Slade EM, Barlow J, Silveira JM, Louzada J, Sayer M (2017) Dung beetle community dynamics in undisturbed tropical forests: implications for ecological evaluations of land-use change. Insect Conserv Diver 10:94-106. https://doi.org/10.1111/icad.12206

  10. Boos J, Ratcliffe BC (1985) A new subspecies of Inca clathrata (Olivier) from Trinidad,West Indies, and range extensions for Inca clathrata sommeri Westwood (Coleoptera: Scarabaeidae: Trichiinae). Coleopts Bull 39:381–389

    Google Scholar 

  11. Braga RF, Korasaki V, Andresen E, Louzada J (2013) Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8:e5778. https://doi.org/10.1371/journal.pone.0057786

    CAS  Article  Google Scholar 

  12. Carvalho JC, Cardoso P, Gomes P (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob Ecol Biogeogr 21:760–771. https://doi.org/10.1111/j.1466-8238.2011.00694.x

    Article  Google Scholar 

  13. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1

    Article  Google Scholar 

  14. Correa CMA, Puker A, Ferreira KR, Cristaldo CM, Ferreira FNF, Abot AR, Korasaki V (2016) Using dung beetles to evaluate the conversion effects from native to introduced pasture in the Brazilian Pantanal. J Insect Conserv 20:447–456. https://doi.org/10.1007/s10841-016-9877-7

    Article  Google Scholar 

  15. Correa CMA, Puker A, Lara MA, Rosa CS, Korasaki V (2019) Importance of urban parks in conserving biodiversity of flower chafer beetles (Coleoptera: Scarabaeoidea: Cetoniinae) in Brazilian Cerrado. Environ Entomol 48:97–104. https://doi.org/10.1093/ee/nvy176

    Article  PubMed  Google Scholar 

  16. Di Iorio O (2014) A review of the natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries. Zootaxa 3790:281–318. https://doi.org/10.11646/zootaxa.3790.2.3

    Article  PubMed  Google Scholar 

  17. Evangelista Neto J, Oliveira CM, Vaz-de-Mello FZ, Frizzas MR (2018) Diversity of Cetoniidae (Insecta: Coleoptera) in the Cerrado of Central Brazil. Entomol Sci 21:84–92. https://doi.org/10.1111/ens.12284

    Article  Google Scholar 

  18. Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. PNAS 106:349–350. https://doi.org/10.1073/pnas.0812016105

    Article  PubMed  Google Scholar 

  19. Garcia FP, Rodrigues SR, Bagnara CAC, Oliveira DS (2013) Survey of saproxilophagous Melolonthidae (Coleoptera) and some biological aspects in Aquidauana. MS. Biota Neotrop 13:38–43. https://doi.org/10.1590/S1676-06032013000300004

  20. Gardner TA, Barlow J, Araujo IS et al (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11:139–150. https://doi.org/10.1111/j.1461-0248.2007.01133.x

    Article  PubMed  Google Scholar 

  21. Hsieh TC, Ma KH, Chao A, McInerny G (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210x.12613

    Article  Google Scholar 

  22. Korasaki V, Braga RF, Zanetti R, Moreira FMS, Vaz-de-Mello FZ, Louzada J (2013) Conservation value of alternative land-use systems for dung beetles in Amazon: valuing traditional farming practices. Biodivers Conserv 22:1485–1499. https://doi.org/10.1007/s10531-013-0487-3

    Article  Google Scholar 

  23. Krikken J (1984) A new key to the suprageneric taxa in the beetle family Cetoniidae, with annotated lists of the known genera. Zool Verh (Leiden) 210:1–75

    Google Scholar 

  24. Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334. https://doi.org/10.1111/geb.12207

    Article  Google Scholar 

  25. Luederwaldt G (1911) Quatro lamellicorneos termitophilos. Rev Mus Paul Nova Ser 8:405–413

    Google Scholar 

  26. Martello F, Andriolli F, de Souza TB, Dodonov P, Ribeiro MC (2016) Edge and land use effects on dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in Brazilian cerrado vegetation. J Insect Conserv 20:957–970. https://doi.org/10.1007/s10841-016-9928-0

    Article  Google Scholar 

  27. Martello F, de Bello F, Morini MSDC, Silva RR, Souza-Campana DRD, Ribeiro MC, Carmona CP (2018) Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci Rep 8:3266. https://doi.org/10.1038/s41598-018-20823-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Micó E (2018) Saproxylic insects in tree hollows. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Dordrecht, pp 693–727

    Google Scholar 

  29. Micó E, Galante E (1998) The behavior of Aethiessa floralis (Fabricius, 1787) (Coleoptera: Scarabaeoidea: Cetoniidae) visiting Onopordum macracanthum Schousboe (Compositae). Elytron 12:69–76

    Google Scholar 

  30. Micó E, Smith ABT, Morón MA (2000) New larval description for two species of Euphoria Burmeister (Coleoptera: Scarabaeidae: Cetoniinae: Euphoriina) with a key to the known larvae and a review of the larval biology. Ann Entomol Soc Am 93:795–801. https://doi.org/10.1603/0013-8746(2000)093[0795:NLDFTS]2.0.CO;2

    Article  Google Scholar 

  31. Micó E, Juárez M, Sánchez A, Galante E (2011) Action of the saproxylic scarab larva Cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. J Nat Hist 45:2527–2542. https://doi.org/10.1080/00222933.2011.596953

    Article  Google Scholar 

  32. Morón MA, Arce R (2002) Descriptions of the immature stages of five Mexican species of Gymnetini (Coleoptera: Scarabaeidae: Cetoniinae). Proc Entomol Soc Wash 104:1036–1054

    Google Scholar 

  33. Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    CAS  Article  PubMed  Google Scholar 

  34. Oliveira DS, Faria TAC, Gomes ES, Rodrigues SR (2016) Biodiversidade de Scarabaeidae saproxilófagos (Coleoptera, Scarabaeoidea) em fragmento de Cerrado em Corumbá, Mato Grosso do Sul, Brasil. Entomotropica 31:248–255

    Google Scholar 

  35. Orozco J (2012a) Escarabajos cetoninos de Guatemala (Coleoptera: Scarabaeidae: Cetoniinae). In: Cano EB, Schuster JC (eds) Biodiversidad de Guatemala. Universidad del Valle de Guatemala, Ciudad de Guatemala, pp 181–191

    Google Scholar 

  36. Orozco J (2012b) Monographic revision of the American genus Euphoria Burmeister, 1842 (Coleoptera: Scarabaeidae: Cetoniinae). Coleopt Bull 66:1–182. https://doi.org/10.1649/0010-066X-66.mo4.1

    Article  Google Scholar 

  37. Orozco J, Pardo-Locarno LC (2004) Description of immature stages of three species of American Cetoniinae (Coleoptera: Scarabaeidae: Cetoniinae). Zootaxa 769:1–14. https://doi.org/10.11646/zootaxa.769.1.1

    Article  Google Scholar 

  38. Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos 120:1625–1638. https://doi.org/10.1111/j.1600-0706.2011.19451.x

    Article  Google Scholar 

  39. Puker A, Lopes-Andrade C, Rosa CS, Grossi PC (2012) New records of termite hosts for two species of Hoplopyga, with notes on the life cycle of Hoplopyga brasiliensis (Coleoptera: Scarabaeidae: Cetoniinae). Ann Entomol Soc Am 105:872–878. https://doi.org/10.1603/AN12068

    Article  Google Scholar 

  40. Puker A, Ad'Vincula HL, Korasaki V, Ferreira FNF, Orozco J (2014) Biodiversity of Cetoniinae beetles (Coleoptera: Scarabaeidae) in introduced and native habitats in the Brazilian Atlantic Forest. Entomol Sci 17:309–315. https://doi.org/10.1111/ens.12069

    Article  Google Scholar 

  41. Puker A, Rosa CS, Orozco J, Solar RRC, Feitosa RM (2015) Insights on the association of American Cetoniinae beetles with ants. Entomol Sci 18:21–30. https://doi.org/10.1111/ens.12085

    Article  Google Scholar 

  42. Puker A, Correa CMA, Silva SA, Silva JVO, Korasaki V, Grossi PC (2020) Effects of fruit-baited trap height on flower and leaf chafer scarab beetles sampling in Amazon rainforest. Entomol Sci 23:1–11. https://doi.org/10.1111/ens.12418

    Article  Google Scholar 

  43. Qian H, Wang X, Zhang Y (2012) Comment on “disentangling the drivers of β diversity along latitudinal and Elevational gradients”. Science 335:1573–157b. https://doi.org/10.1126/science.1216450

    CAS  Article  PubMed  Google Scholar 

  44. Queiroz ACM, Rabello AM, Braga DL et al (2017) Cerrado vegetation types determine how land use impacts ant biodiversity. Biodivers Conserv 29:2017–2034. https://doi.org/10.1007/s10531-017-1379-8

    Article  Google Scholar 

  45. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  46. Ratcliffe BC (2018) A monographic revision of the genus Gymnetis MacLeay, 1819 (Coleoptera: Scarabaeidae: Cetoniinae). Bull Univ Nebr State Mus 31:1–250

    Google Scholar 

  47. Rodrigues SR, Oliveira JLN, Bagnara CAC, Puker A (2013) Cetoniinae (Coleoptera: Scarabaeidae) attracted to fruit-baited traps near Aquidauana, Mato Grosso do Sul, Brazil. Coleopts Bull 67:119–122. https://doi.org/10.1649/0010-065x-67.2.119

    Article  Google Scholar 

  48. Schoolmeesters P (2020) Scarabs:World Scarabaeidae Database (version Jan 2019). In: Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, Nieukerken E van, Zarucchi J, Penev L (eds) Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. www.catalogueoflife.org/annual-checklist/2019. Species 2000: Naturalis, Leiden, The Netherlands. Accessed 04 May 2020

  49. Sousa R, Fuhrmann J, Kouklík O, Šípek P (2018) Immature stages of three species of Inca LePeletier & Serville, 1828 (Coleoptera: Scarabaeidae: Cetoniinae) and morphology of phytophagous scarab beetle pupa. Zootaxa 4434:65–88. https://doi.org/10.11646/zootaxa.4434.1.4

    Article  PubMed  Google Scholar 

  50. Steenhuisen SL, Johnson SD (2012) Evidence for beetle pollination in the African grassland sugarbushes (Protea: Proteaceae). Plant Syst Evol 298:857–869. https://doi.org/10.1007/s00606-012-0589-5

    Article  Google Scholar 

  51. Tabarelli M, Aguiar AV, Ribeiro MC, Metzeger JP, Peres AC (2010) Prospects for biodiversity conservation in the Atlantic forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340. https://doi.org/10.1016/j.biocon.2010.02.005

    Article  Google Scholar 

  52. Tavares A, Beiroz W, Fialho A, Frazão F, Macedo R, Louzada J, Audino L (2019) Eucalyptus plantations as hybrid ecosystems: implications for species conservation in the Brazilian Atlantic forest. For Ecol Manag 433:131–139. https://doi.org/10.1016/j.foreco.2018.10.063

    Article  Google Scholar 

  53. Touroult J, Le Gall P (2013) Fruit feeding Cetoniinae community structure in an anthropogenic landscape in West Africa. J Insect Conserv 17:23–34. https://doi.org/10.1007/s10841-012-9483-2

    Article  Google Scholar 

  54. Vasconcelos RN, Cambui ECB, Mariano-Neto E, da Rocha PLB, Cardoso MZ (2019) The role of Eucalyptus planted forests for fruit-feeding butterflies' conservation in fragmented areas of the Brazilian Atlantic forest. For Ecol Manag 432:115–120. https://doi.org/10.1016/j.foreco.2018.09.017

    Article  Google Scholar 

  55. Vaz-de-Mello FZ, Puker A (2020) Catálogo Taxonômico da Fauna do Brasil. PNUD. Accessed 04 May 2020

Download references

Acknowledgements

We thank José Henrique Schoereder for providing space and equipment of the Laboratory of Community Ecology (Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil) for screening and identification of the flower chafer beetles, and Mrs. Eduardo Morici Ladeira and Marcos Francisco Simões de Almeida for allowing the execution of this study on their properties. CMAC received a PhD scholarschip from the Conselho Nacional de Desenvolvimento Científico Tecnológico (CNPq, Brazil) (140741/2015-1) from the Entomology Graduate Program, Universidade Federal de Lavras, and PhD sandwich scholarship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) (88881.134292/2016-01). PGdS thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for post-doctoral grant (Process 88882.316025/2019-01, Code 001).

Author information

Affiliations

Authors

Contributions

CMAC, PGdS, AP and HLA contributed equally to the manuscript.

Corresponding author

Correspondence to César M. A. Correa.

Ethics declarations

The experimentation was no invasive and complied with Brazilian law. At the end of the experiment, the specimens were deposited in the “Entomological Collection at the IFMT” following standard procedures.

Conflict of interest

CMAC, PGdS, AP and HLA declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Correa, C.M.A., da Silva, P.G., Puker, A. et al. Exotic pastureland is better than Eucalyptus monoculture: β-diversity responses of flower chafer beetles to Brazilian Atlantic Forest conversion. Int J Trop Insect Sci 41, 137–144 (2021). https://doi.org/10.1007/s42690-020-00186-9

Download citation

Keywords

  • Abundance gradients,·fruit chafer beetles
  • Land use change
  • Nestedness
  • Turnover