Control of Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae) in Phaseolus lunatus treated with commercial essential oils

Abstract

The objective of this study was to evaluate the toxicity and preference (oviposition and emergence of adults) of Zabrotes subfasciatus (Coleoptera:Chrysomelidae: Bruchinae) in Phaseolus lunatus grains with commercial essential oils of Acorus calamus, Betula lenta, Cinnamomum cassia and Citrus aurantium. The contact, fumigation and preference tests were carried out to check the effect of essential oils on the insects. In the contact and fumigation test the lethal concentrations LC50 and LC95 were determined. In the contact test (A) calamus was the most toxic with toxicity ratio 61.17. It has been found in the regression analyzes that increased concentrations of essential oils reduced the number of eggs and insects emerged. In the fumigation test, (B) lenta was the most toxic with toxicity ratio 86.2. The concentrations 0.2; 0.6; 25; 1.2 µL / 20 g of (A) calamus, (B) lenta, (C) aurantium and C. cassia provided a higher reduction of eggs and adult emergence in the preference test. The essential oils tested can be used in the control of Z. subfasciatus, resulting in mortality and reduction of oviposition and adults.

This is a preview of subscription content, log in to check access.

References

  1. Adams RP (1995) Identification of essential oil component by chromatography/mass spectroscopy. Allured Publishing, Carol Stream

    Google Scholar 

  2. Alves SM (2012) Toxicidade e repelência de óleos essenciais no manejo de Zabrotes subfasciatus (Boh.) (Coleoptera: Chrysomelidae, Bruchinae) em grãos de Phaseolus vulgaris L. Dissertação (Mestrado em Entomologia Agrícola) -Universidade Federal Rural de Pernambuco

  3. Aslan I, Özbek H, Çalmaşur Ö, Şahin F (2004) Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2003.09.003

    Google Scholar 

  4. Baldin E, Franco R, Souza D (2007) Resistência de genótipos de feijoeiro “Phaseolus vulgaris” (L.) a “Zabrotes subfasciatus” (Boh.,1833) (Coleoptera: bruchidae). Boletín Sanid Veg Plagas 34(6):1507–1513

    Google Scholar 

  5. Brito JP, Oliveira JEM, Bortoli SA (2006) Toxicidade de óleos essenciais de Eucalyptus spp. sobre Callosobruchsu maculatus (Fabr., 1775) (Coleoptera: Bruchidae). Revista de Biologia e Ciências Da Terra 6(1):96–103

    Google Scholar 

  6. Coitinho RLBC, Oliveira JV, Gondim MGC, Camara CAG (2006) Atividade inseticida de óleos vegetais sobre Sitophilus zeamais mots. (coleoptera: Curculionidae) em milho armazenado. Rev Caatinga 19:176–182

    Google Scholar 

  7. Corrêa JCR, Salgado HRN (2011) Atividade inseticida das plantas e aplicações: revisão. Rev Bras Plantas Med 13:500–503

    Google Scholar 

  8. Doll VD, Kratz PDJA (1963) Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471

    Google Scholar 

  9. Don-Pedro KN (1989) Mode of action of fixed oils against eggs of Callosobruchus maculatus (F.). Pestic Sci. https://doi.org/10.1002/ps.2780260202

    Google Scholar 

  10. Finney DJ (1971) Probit analysis. 3ed, 3 edn. Cambridge Press, London

    Google Scholar 

  11. França SM, Oliveira JV, Esteves Filho AB, Oliveira CM (2012) Toxicity and preference of essential oils to Zabrotes subfasciatus (Boheman) (Coleoptera, Chrysomelidae, Bruchinae) in Phaseolus vulgaris L. Acta Amaz 42:381–386

    Google Scholar 

  12. Franca SM, Breda MO, Barbosa DRS, Araujo AMN, Guedes CA (2017) The sublethal effects of insecticides in insects. Biological Control of Pest Vector Insects. https://doi.org/10.5772/66461

    Google Scholar 

  13. Gallo D, Nakano O, Silveira Neto S, Carvalho RPL, Batista GC, Parra JRP, Berti Filho E, Zucchi RA, Alves SB, Vendramini JD, Marchini LC, Lopes JRS, Omoto C (2002) Entomologia agrícola. São Paulo, FEALQ, 450p

  14. Girão Filho JE, Pádua LEM, Silva PRR, Gomes RLFG, Pessoa EF (2012) Resistência genética de acessos de feijão fava ao gorgulho Zabrotes subfasciatus (Boh.) (Coleoptera:Bruchidae). Com Sci 3:84–89

    Google Scholar 

  15. Gusmão NMS, Oliveira JV, Navarro DMAF, Dutra KA, Silva WA, Wanderley MJA (2013) Contact and fumigant toxicity and preference of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (Fabr.) (Coleoptera: Chrysomelidae, Bruchinae). J Stored Prod Res 54:41–47

  16. Işikber AA, Özder N, Saǧlam Ö̈ (2009) Susceptibility of eggs of Tribolium confusum, Ephestia kuehniella and Plodia interpunctella to four essential oil vapors. Phytoparasitica. https://doi.org/10.1007/s12600-009-0035-6

  17. Kim S-I, Park C, Ohh MH, Cho HC, Ahn YJ (2002) Contact and fumigant activities of aromatic plant extracts and essential oils against Lasioderma serricorne (Coleoptera: Anobiidae). J Stored Prod Res. https://doi.org/10.1016/S0022-474X(02)00013-9

    Google Scholar 

  18. Kasim NN, Ismail NASS, Masdar ND, Hamid FA, Nawawi WI (2014) Extraction and Potential of Cinnamon Essential Oil towards Repellency and Insecticidal Activity. Int J Sci Res Publ 4(7):1–6

    Google Scholar 

  19. Kim S-I, Roh JY, Kim DH, Lee HS, Ahn YJ (2003) Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J Stored Prod Res. https://doi.org/10.1016/S0022-474X(02)00017-6

    Google Scholar 

  20. Kumar R, Sharma S, Sharma S, Kumar N (2016) Drying methods and distillation time affects essential oil content and chemical compositions of Acorus calamus L. in the western Himalayas. J Appl Res Med Aromat Plants. https://doi.org/10.1016/j.jarmap.2016.06.001

    Google Scholar 

  21. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag Sci. https://doi.org/10.1002/ps.548

    PubMed  Google Scholar 

  22. López MD, Pascual-Villalobos MJ (2010) Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2009.11.005

    Google Scholar 

  23. Lucena FT, de Almeida FA, Junior GAT, Leite MLT, Fonseca WL, Cardoso TAL (2018) Reaction of lima bean accessions to Meloidogyne javanica. Pesquisa Agropecuaria Tropical. https://doi.org/10.1590/1983-40632018v4849761

    Google Scholar 

  24. Melo LJV, Fernandes PD, Gheyi HH, Barreiro Neto M, Franco CFO (2009) Crescimento e produção de fava em função de lâminas de irrigação e densidade de plantio. Tecnol Ciênc Agropec 3:37–41

    Google Scholar 

  25. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) In vitro acetylcholinesterase inhibitory activity of the essential oil from Acorus calamus and its main constituents. Planta Med. https://doi.org/10.1055/s-2007-967114

    PubMed  Google Scholar 

  26. Nerio LS, Jesus OV, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378

    CAS  PubMed  Google Scholar 

  27. Pessoa EF (2013) Avaliação da resistência genética de feijão-fava a Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Crisomelidae: Bruchidae). Dissertação (Mestrado em Agronomia) -Universidade Federal do Piau&#237

  28. SAS Institute (2002) User’s guide, version 8.02, TS level 2MO. SAS Institute Inc., Cary

    Google Scholar 

  29. Soković M, Glamočlija J, Marin PD, Brkić D, Van Griensven LJLD (2010) Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules. https://doi.org/10.3390/molecules15117532

    PubMed  PubMed Central  Google Scholar 

  30. Verbel JO, Tirado-Ballestas I, Caballero-Gallardo K, Stashenko EE (2013) Essential oils applied to the food act as repellents toward Tribolium castaneum. J Stored Prod Res 5:145–147

    Google Scholar 

  31. Wang R, Wang R, Yang B (2009) Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2008.12.002

    Google Scholar 

  32. Woods KE, Chhetri BK, Jones CD, Goel N, Setzer WN (2013) Bioactivities and compositions of Betula nigra essential oils. J Med Act Plants 2(1):1–9

    Google Scholar 

  33. Zewde DK, Jembere B (2010) Evaluation of orange peel Citrus Sinensis (L) As a Source of Repellent, Toxicant and Protectant against Zabrotes Subfasciatus (Coleoptera: Bruchidae). MEJS 2:61–75

    Google Scholar 

Download references

Acknowledgements

To the Coordination of Superior Level Training (CAPES) and Research Foundation of the Piauí State by scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Douglas Rafael e Silva Barbosa.

Ethics declarations

Conflict of interest

All authors of this manuscript declare have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santana, C.d., Fontes, L.d., da Silva, P.H.S. et al. Control of Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae) in Phaseolus lunatus treated with commercial essential oils. Int J Trop Insect Sci (2020). https://doi.org/10.1007/s42690-020-00181-0

Download citation

Keywords

  • Botanical insecticides
  • Fumigation
  • Toxicity
  • Preference