Sex dimorphic adaptive responses against Azadirachtin toxicity in gut tissues of Spathosternum prasiniferum prasiniferum (Orthoptera; Acridoidea)

Abstract

Acridids (short-horned-grasshopper) are distributed largely in the agricultural-field, grass-lands, and forests. It may act as a dependable bio-indicator species in response to ecological-stress. Among the acridids found in West Bengal, Spathosternum prasiniferum prasiniferum (Walker, 1871) are multivoltine in nature and were considered for the present study. Azadirachtin is a tetranortri terpenoids present in neem tree (Azadirachta indica), which develops antifeedancy/ growth-regulation/ fecundity-suppression/ sterilization/ oviposition/ repellence and deformity in insect via oxidative stress by the production of free radicals and causes their death. Antioxidants protect insects by scavenging free radicals. This study explored Azadirachtin toxicity on food-indices/biochemical/physiological influences on mid-gut of Spathosternum prasiniferum prasiniferum. Commercially available Azadirachtin was applied (1–20 ppm) on S. pr. prasiniferum for in vivo/in vitro experiment, where gut-tissues were analysed to determine oxidative-stress-markers (ALP/MDA/NPSH/AChE), antioxidant-markers (SOD/CAT/GPx). Food-weight/insect-weight/excreta-weight were recorded before/after the experiment to evaluate the consumption-index(CI), approximate-digestibility(AD), efficiency of conversion of digested-food(ECD) and efficiency of conversion of ingested-food(ECI). Nutrient metabolizing-enzymes (cellulase/amylase) were screened. Azadirachtin (>7 ppm) decreased ECD and restricted food-consumption that increased insect-mortality (50–80%). The gut MDA significantly increased with an impairment of soluble-thiols. The antioxidant-enzymes were variably impaired resulting in tissue-damages more in male than female. Finally, Azadirachtin influenced nutrient-metabolizing-enzymes and antioxidant-enzymes indicating these parameters to be good stress-markers. This finding might be extrapolated for further evaluation of the ecological impact of Azadirachtin on the food chain/web in a composite-ecosystem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4

Abbreviations

AD:

Approximate digestibility

CI:

Consumption index

ECD:

Efficiency of conversion of digested food

ECI:

Efficiency of conversion of ingested food

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

TBA:

Thiobarbituric Acid

NPSH:

Non-protein soluble-thiols

ALP:

Alkaline phosphatase

AChE:

Acetyl cholinesterase

SOD:

Superoxide dismutase

CAT:

Catalase

GPx:

Glutathione peroxidase

DNA:

Deoxyribonucleic acid

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267

    CAS  Article  Google Scholar 

  2. Andrades A, Contreras LM (2017) Amylase zymography. Methods MolBiol 1626:301–308

    CAS  Google Scholar 

  3. Belfield A, Goldberg DM (1971) Colorimetric determination of alkaline phosphatase activity. Enzymes 12(5):561–568

    CAS  Article  Google Scholar 

  4. Bezzar-Bendjazia R, Kilani-Morakchi S, Maroua F, Aribi N (2017) Azadirachtin induced larval avoidance and anti feeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae). PesticBiochemPhysiol 143:135–140

    CAS  Google Scholar 

  5. Blaney WM, Simmonds MSJ, Ley SV, Anderson JC, Toogood PL (1990) Antifeedant effects of azadirachtin and structurally related compounds on lepidopterous larvae. Entomol Exp Appl 55(2):149–160

    CAS  Article  Google Scholar 

  6. Butterworth JH, Morgan ED (1968) Isolation of a substance that suppresses feeding in locust. Chem Comm 35(1):23–24

    Google Scholar 

  7. Compton MM (1992) A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev 11(12):105–119

    CAS  Article  Google Scholar 

  8. El-Demerdash FM (2007) Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. ToxicolIn Vitro 21(3):392–397

    CAS  Article  Google Scholar 

  9. Ellman GL, Courtney KD, Andres JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. BiochemPharmacol 7(2):88–90

    CAS  Google Scholar 

  10. Ender Y, Onder C (2006) Effects of dichlorvos on lipid peroxidation in mice on subacute and subchronic periods. Pest BiochemPhysiol 86(2):106–109

    Article  Google Scholar 

  11. Forman HJ. (2009). Critical methods in free radical biology & medicine. Free RadicBiol med 47Suppl2:S207

  12. Garcia ES, Uhl M, Remboid H (1986) Azadirachtin, a chemical probe for the study of moulting process in Rhodniusprolixus. J Insect Physiol C41:771–775

    Google Scholar 

  13. Isman MB (1997) Neem insecticides. Pest Outlook 8:32–38

    CAS  Google Scholar 

  14. Kale M, Rathore N, John S, Bhatnagar D (1999) Lipid peroxidative damage on pyrethroidexposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett 105(3):197–205

    CAS  Article  Google Scholar 

  15. Koul O (1984) Azadirachtin: insect interaction with the development of red cotton bugs Dysdercuskoenigii. Entomol Exp Appl 36(1):85–88

    CAS  Article  Google Scholar 

  16. Koul O, Amanai K, Ohtaki T (1987) Effect of azadirachtin on the endocrine events of Bombyxmori. J Insect Physiol 33(2):103–108

    CAS  Article  Google Scholar 

  17. Ley SV, Denholm AA, Wood A (1993) The chemistry of azadirachtin. Nat Prod Rep 10(2):–109, 157

  18. Li R, Jia Z, Trush MA (2016) Defining ROS in biology and medicine. React Oxyg Species(Apex) 1(1):9–21

    Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Article  Google Scholar 

  20. Mordue AJL, Blackwell A (1993) Azadirachtin: An Update. J Insect Physiol 39(11):903–924

    CAS  Article  Google Scholar 

  21. Mordue AJL, Nisbet AJ, Jennens L, Ley SV, Mordue W (1999) Tritiateddihydroazadirachtin binding to Schistocercagregariatestes testes and SpodopteraSf9 cells suggests a similar cellular mechanism of action for azadirachtin. In: Singh RP, Saxena RC (ed) Azadirachtaindica A. Juss. IntNeem Conference, Gatton, Australia, Oxford & IBH Publ. Co. Pvt. Ltd. p 247–258

  22. Mordue AJL, Morgan ED, Nisbet AJ (2010) Azadirachtin, a natural product in insect control. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 117–134

  23. Mordue AJL, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachtaindica: its action against insects. Ann Soc Entomol Bras 29(4):615–632

    CAS  Article  Google Scholar 

  24. Nisbet AJ, Mordue AJL, Mordue W, Williams LM, Hannah L (1996) Autoradiographic localisation of [22,23-3H2] dihydroazadirachtin binding sites in desert locust testes. Tissue Cell 28:725–729

    CAS  Article  Google Scholar 

  25. Nisbet AJ, Mordue AJL, Mordue W (1995) Detection of [22,23-3H2] dihydroazadirachtin binding sites on membranes from Schistocercagregaria(Forskol) testes. Insect BiochemMolBiol 25:551–558

    CAS  Article  Google Scholar 

  26. Nouri-Ganbalani G, Borzoui E, Abdolmaleki A, Abedi Z, George KS (2016) Individual and combined effects of Bacillus Thuringiensis and Azadirachtin on PlodiaInterpunctellaHübner (Lepidoptera: Pyralidae). J Insect Sci 16(1):1–8

    Article  Google Scholar 

  27. Otto DME, Moon TW (1995) 3,3′,4,4′-tetrachlorobiphenyl effects on antioxidant enzymes and glutathione status in different tissues of rainbow trout. PharmacolToxicol 77(4):281–287

    CAS  Google Scholar 

  28. Rao PJ, Subrahmanyam B (1986) Azadirachtin induced changes in development, food utilization and haemolymph constituents of SchistocercagregariaForskel. J Appl Entomol 102(1–5):217–224

    CAS  Article  Google Scholar 

  29. Ruscoe CNE (1972) Growth disruption effects of an insect antifeedant. Nature 236:159–160

    CAS  Article  Google Scholar 

  30. Sakharov IY, Makarova IE, Ermolin GA (1989) Chemical modification and composition of tetramericisozyme K of alkaline phosphatase from harp seal intestinal mucosa. Comp BiochemPhysiol B Comp Biochem 92(1):119–122

    Article  Google Scholar 

  31. Sami AJ, Shakoori AR (2011) Cellulase activity inhibition and growth retardation of associated bacterial strains of Aulacophorafoviecollis by two glycosylated flavonoids isolated from Mangiferaindica leaves. J Med Plant Res 5(2):184–190

    CAS  Google Scholar 

  32. Senthil-Nathan SS (2006) Effects of Meliaazedarachon nutritional physiology and enzyme activities of the rice leaffolderCnaphalocrocismedinalis (Guenée) (Lepidoptera: Pyralidae). PesticBiochemPhysiol 84:98–108

    Google Scholar 

  33. Shaaya E, Rafaeli A (2007) Essential oils as biorational insecticides-potency and mode of action. In: Ishaaya I, Horowitz AR, Nauen R (eds) Insecticides design using advanced technologies. Springer, Berlin, Heidelberg, pp 249–261

    Google Scholar 

  34. Sharma DC, Saxena PN, Singh VK, Sharma R (2010) Assessment of DNA degradation in lymphocytes of albino rat (Rattusnorvegicus) under lambda cyhalothrin stress. World Applied Sci J 11(1):24–28

    CAS  Google Scholar 

  35. Sharma HC, Norris DM (1991) Comparative feeding preference and food intake and utilization by the cabbage looper (Lepidoptera: Noctuidae) on three legume species. Environ Entomol 20(6):1589–1594

    Article  Google Scholar 

  36. Shu B, Zhang J, Cui G, Sun R, Yi X, Zhong G (2018) Azadirachtin affects the growth of SpodopteralituraFabricius by inducing apoptosis in larval midgut. Front Physiol 9:137. https://doi.org/10.3389/fphys.2018.00137

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sieber KP, Rembold H (1983) The effects of azadirachtin on the endocrine control of moulting in Locustamigratoria. J Insect Physiol 29:523–527

    CAS  Article  Google Scholar 

  38. Sivakumar S, Mohan M, Franco OL, Thayumanavan B (2006) Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pest BiochemPhysiol 85(3):155–160

    CAS  Article  Google Scholar 

  39. Stevenson DE, Kehrer JP, Kolaja KL, Walborg EF Jr, Klaunig JE (1995) Effect of dietary antioxidants on dieldrin-induced hepatotoxicity in mice. ToxicolLett 75(1–3):177–183

    CAS  Google Scholar 

  40. Subrahmanyam B, Muller T, Rembold H (1989) Inhibition of turnover of neurosecretion by azadirachtin in Locustamigratoria. J Insect Physiol 35:493–500

    CAS  Article  Google Scholar 

  41. Walker (1871) Spathosternum prasiniferum prasiniferum. https://indiabiodiversity.org/species/show/277412. Accessed 4 June 2020

  42. Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66

    CAS  Article  Google Scholar 

  43. Zebitz CPW. (1987). Potential of neem seed kernel extracts in mosquito control: In: Schmutterer H, Ascher KRS(ed) Natural Pesticides from the neem tree (Azadirachtaindica A. Juss) and other tropical plants, Eschborn, GTZ, Germany,pp 555–573

  44. Zerbetto E, Vergani L, Dabbeni-Sala F (1997) Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis 18(11):2059–2064

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study is a part of Ph.D. thesis research work by Balaram Manna and is supported by the Department of Biochemistry, Vidyasagar University, Midnapore-721102, West Bengal, India. The author is thankful to the Director, Zoological Survey of India (Kolkata) for authentic identification of the acridid species. The author is thankful to Ms. Prativa Pradhan, Assistant Technology Manager, Department of Agriculture, Govt. of West Bengal, for species selection and technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Smarajit Maiti.

Ethics declarations

Declaration of conflicting interests

The author(s) declared no potential conflicts of interests with respect to the authorship and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manna, B., Maiti, S. & Das, A. Sex dimorphic adaptive responses against Azadirachtin toxicity in gut tissues of Spathosternum prasiniferum prasiniferum (Orthoptera; Acridoidea). Int J Trop Insect Sci 41, 107–114 (2021). https://doi.org/10.1007/s42690-020-00180-1

Download citation

Keywords

  • Azadirachtin
  • Gut
  • Food indices
  • Oxidative stress
  • Antioxidant defence