Skip to main content

Electroactive polymer (EAP) actuators—background review

Abstract

Certain polymers can be excited by electric, chemical, pneumatic, optical, or magnetic field to change their shape or size. For convenience and practical actuation, using electrical excitation is the most attractive stimulation method and the related materials are known as electroactive polymers (EAP) and artificial muscles. One of the attractive applications that are considered for EAP materials is biologically inspired capabilities, i.e., biomimetics, and successes have been reported that previously were considered science fiction concepts. Today, there are many known EAP materials. Some of the EAP materials also exhibit the reverse effect of converting mechanical strain to electrical signal allowing using them as sensors and energy harvesters. Efforts are made worldwide to turn EAP materials to actuators-of-choice and they involve developing their scientific and engineering foundations including the understanding of their operation principles. These are also involve developing effective computational chemistry models, comprehensive material science, and electro-mechanics analytical tools. These efforts have been leading to better understanding the parameters that control their capability and durability. Moreover, effective processing techniques are developed for their fabrication, shaping, electroding, and characterization. While progress have been reported in the research and development of all the types of EAP materials, the trend in recent years has been growing towards significant development in using dielectric elastomers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Acome, E., Mitchell, S.K., Morrissey, T.G., Emmett, M.B., Benjamin, C., King, M., Radakovitz, M., Keplinger, C.: Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science. 359(6371), 61–65 (2018)

    Article  Google Scholar 

  2. 2.

    Alekseyev, N.I., Broiko, A.P., Kalenov, V.E., Korlyakov, A.V., Lagosh, A., Lifshits, A.O., Luchinin, V.V., Khmel’nitskii, I.K.: Structure of a graphene-modified electroactive polymer for membranes of biomimetic systems: simulation and experiment. J. Struct. Chem. 59(7), 1707–1718 (2018). https://doi.org/10.1134/S0022476618070260

    Article  Google Scholar 

  3. 3.

    Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., Calius, E.P.: Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012)

    Article  Google Scholar 

  4. 4.

    Anquetil, P.A., Yu, H.-H., Madden, P.G., Madden, J.D., Swager, T.M., Hunter, I.W.: In: Bar-Cohen, Y. (ed.) “Thiophene-based molecular actuators”, Proceedings of SPIE 9th Annual Symposium on Smart Structures and Materials: Electroactive Polymer Actuators and Devices, pp. 424–434. SPIE Press, Bellingham (2002)

    Google Scholar 

  5. 5.

    Araromi, O.A., Gavrilovich, I., Shintake, J., Rosset, S., Richard, M., Gass, V., Shea, H.R.: Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans. Mechatron. 20(1), 438–446 (2015)

    Article  Google Scholar 

  6. 6.

    Bar-Cohen, Y. (ed.): Proceedings of the first SPIE’s Electroactive Polymer Actuators and Devices (EAPAD) Conf., Smart Structures and Materials Symposium, vol. 3669, ISBN 0–8194–3143-5, pp. 1–414 ()1999

  7. 7.

    Bar-Cohen, Y. (ed.): Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges, vol. PM136, 2nd edn, pp. 1–765. SPIE Press, Bellingham (2004) ISBN 0–8194–5297-1

    Google Scholar 

  8. 8.

    Bar-Cohen, Y.: Biomimetics - Biologically Inspired Technologies, pp. 1–527. CRC Press, Boca Raton, ISBN 0849331633 (2005)

    Book  Google Scholar 

  9. 9.

    Bar-Cohen, Y. (ed.): Biomimetics: Nature-Based Innovation, ISBN: 9781439834763, ISBN 10: 1439834768, pp. 1–788. CRC Press, Taylor & Francis Group, Boca Raton (2011)

    Google Scholar 

  10. 10.

    Bar-Cohen, Y.: WorldWide Electroactive Polymer Actuators Webhub, http://eap.jpl.nasa.gov (Last updated December (2018). Accessed March 14, 2019

  11. 11.

    Bar-Cohen, Y., Hanson, D.: The Coming Robot Revolution - Expectations and Fears About Emerging Intelligent, Humanlike Machines. Springer, New York,ISBN: 978–0–387-85348-2 (2009)

    Google Scholar 

  12. 12.

    Bar-Cohen, Y., Xue, T., Lih, S.S.: Polymer Piezoelectric Transducers for Ultrasonic NDE, http://www.ndt.net/article/yosi/yosi.htm. 1st International Internet Workshop on Ultrasonic NDE, Subject: Transducers, organized by R. Diederichs, UTonline J., Germany (1996). Accessed March 14, 2019

  13. 13.

    Bauer, S., Bauer, F.: Piezoelectric polymers and their applications. Piezoelectricity Evolution and Future of a Technology Series: Springer Series in Materials Science, vol. 114, Heywang, W., Lubitz, K., Wersing, W. (eds.), ISBN: 978–3–540-68680-4, pp. 157–177 (2008)

  14. 14.

    Baughman, R.H.: Conducting polymer artificial muscles. Synth. Met. 78, 339–353 (1996)

    Article  Google Scholar 

  15. 15.

    Baughman, R.H.: Stronger, faster, and more powerful artificial muscle yarns and fibers, Paper No. 10594-6, Bar-Cohen, Y., Anderson I. (eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO. (2018)

  16. 16.

    Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Basrisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science. 284, 1340–1344 (1999)

    Article  Google Scholar 

  17. 17.

    Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010)

    Article  Google Scholar 

  18. 18.

    Calvert, P.: Electroactive polymer gels, Chapter 5, in [Bar-Cohen, 2004], pp. 95–148

  19. 19.

    Calvert, P.: “Gel sensors and actuators,” Special Issue dedicated to EAP. Materials Research Society (MRS) Bulletin. 33(3), 207–212 (2008)

    Article  Google Scholar 

  20. 20.

    Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P.: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, San Diego (2008)

    Google Scholar 

  21. 21.

    Carpi, F., Anderson, I., Bauer, S., Frediani, G., Gallone, G., Gei, M., Graaf, C., Jean-Mistral, C., Kaal, W., Kofod, G., et al.: Standards for dielectric elastomer transducers. Smart Mater Struct. 24(10), (2015) 25 pages). https://doi.org/10.1088/0964-1726/24/10/105025

  22. 22.

    Carrico, J.D., Traeden, N.W., Aureli, M., Leang, K.K.: Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater. Struct. 24, 125021 (2015). https://doi.org/10.1088/0964-1726/24/12/125021

    Article  Google Scholar 

  23. 23.

    Chen, Z.: A review on robotic fish enabled by ionic polymer–metal composite artificial muscles. Robotics Biomim. 4(1), 24 (2017)

    Article  Google Scholar 

  24. 24.

    Cheng, Z., Zhang, Q.: Field-activated electroactive polymers. Special Issue dedicated to EAP, Materials Research Society (MRS) Bulletin. 33(3), 190–195 (2008)

  25. 25.

    Choi, H.R., Koo, I.M., Jung, K., Roh, S.-G., Koo, J.C., Nam, J.-D., Lee, Y.K.: In: Smela, E., Carpi, F. (eds.) ISBN-10: 0–470–77305-7; ISBN-13: 978–0–470-77305-5A braille display system for the visually disabled using polymer based soft actuator, Chapter 23 in Biomedical Applications of Electroactive Polymer Actuators. Wiley, Hoboken (2009)

    Google Scholar 

  26. 26.

    Christianson, C., Goldberg, N.N., Deheyn, D.D., Cai, S., Tolley, M.T.: Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3(17), eaat1893 (2018)

    Article  Google Scholar 

  27. 27.

    Cornogolub, A., Cottinet, P.J., Petit, L.: Hybrid energy harvesting using electroactive polymers combined with piezoelectric materials. Adv. Sci. Technol. 96, 117–123 (2014). https://doi.org/10.4028/www.scientific.net/AST.96.117

    Article  Google Scholar 

  28. 28.

    Costache, F.A., Schirrmann, C., Seifert, R., Bornhorst, K., Pawlik, B., Despang, H.G., Heinig, A.: Polymer energy harvester for powering wireless communication systems. Procedia Eng. 120, 333–336 (2015)

    Article  Google Scholar 

  29. 29.

    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science. 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453

    Article  Google Scholar 

  30. 30.

    Eguchi, M.: On the permanent electret. Philos. Mag. 49, 178 (1925)

    Article  Google Scholar 

  31. 31.

    Fasolt, B., Hodgins, M., Rizzello, G., Seelecke, S.: Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes. Sensors Actuators A Phys. 265, 10–19 (2017)

    Article  Google Scholar 

  32. 32.

    Fisch, A., Mavroidis, C., Bar-Cohen, Y., Melli-Huber, J.: Haptic and telepresence robotics Chapter 4. In: Bar-Cohen, Y., Breazeal, C. (eds.) Biologically-Inspired Intelligent Robots, vol. PM122, ISBN 0–8194–4872-9, pp. 73–101. SPIE Press, Bellingham (2003)

    Google Scholar 

  33. 33.

    Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Jpn. 10, 149–154 (1955)

    Article  Google Scholar 

  34. 34.

    Furukawa, T.: Piezoelectricity and pyroelectricity in polymers. IEEE Trans. Electr. Insul. 24(3), 375–394 (1989)

    Article  Google Scholar 

  35. 35.

    Ganet, F., et al.: Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci. Rep. 5, 18593–18593 (2015)

    Article  Google Scholar 

  36. 36.

    Gisby, T.A., Xie, S., Calius, E.P., Anderson, I.A.: Integrated sensing and actuation of muscle-like actuators," Proc. SPIE Proc. SPIE 7287, 728707 (2009)

  37. 37.

    Graetzel, C., Suter, M., Aschwanden, M.: Reducing laser speckle with electroactive polymer actuators. Proc. SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD) 2015, 943004 (2015)

  38. 38.

    Gu, G-Y., Zhu, J., Zhu, L-M., Zhu, X.: A survey on dielectric elastomer actuators for soft robots. Bioinspiration & Biomimetics 12(1), 011003 (2017)

  39. 39.

    Guo, J., Xiang, C., Rossiter, J.: A soft and shape-adaptive electroadhesive composite gripper with proprioceptive and exteroceptive capabilities. Mater. Des. 156, 586–587 (2018)

    Article  Google Scholar 

  40. 40.

    Hau, S., Bruch, D., Rizzello, G., Motzki, P., Seelecke, S.: Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains. Smart Mater. Struct. 27(7), 074003 (2018a)

    Article  Google Scholar 

  41. 41.

    Hau, S., Rizzello, G., Seelecke, S.: A novel dielectric elastomer membrane actuator concept for high-force applications. Extreme Mech. Lett. 23, 24–28 (2018b)

    Article  Google Scholar 

  42. 42.

    Henke, E.F.M., Schlatter, S., Anderson, I.A.: Soft dielectric elastomer oscillators driving bioinspired robots. Soft Robotics. 4(4), (2017). https://doi.org/10.1089/soro.2017.0022

  43. 43.

    Hyeon, J.S., Kim, S.J.: Artificial muscle from graphene and carbon nanotube, Bar-Cohen Y. (ed.), Paper No. 10594-48, and I Anderson (Eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO. (2018)

  44. 44.

    Inzelt, G.: Conducting polymers: past, present, future. J. Electrochem. Sci. Eng. 8(1), 3–37 (2018). https://doi.org/10.5599/jese.448 Open Access

    Article  Google Scholar 

  45. 45.

    Jordi, C., Michel, S., Fink, E.: Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspir Biomim. 5(2), 026007 (2010)

    Article  Google Scholar 

  46. 46.

    Jung, K., Koo, J.C., Nam, J., Lee, Y.K., Choi, H.R.: Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2, S42–S49 (2007)

    Article  Google Scholar 

  47. 47.

    Katchalsky, A., Zwick, M.: Mechanochemistry and ion exchange. J. Polym. Sci. 16(82), 221–234 (1955)

    Article  Google Scholar 

  48. 48.

    Kawai, H.: Piezoelectricity of poly(viny1idene fluoride). Japan J. Appl. Phys. 8, 975–976 (1969)

    Article  Google Scholar 

  49. 49.

    Kepler, R.G.: Piezoelectricity, pyroelectricity and ferroelectricity in organic materials. Annu. Rev. Phys. Chem. 29, 497–518 (1978)

    Article  Google Scholar 

  50. 50.

    Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S.: Roentgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc. Natl. Acad. Sci. 107(10), 4505–4510 (2010)

    Article  Google Scholar 

  51. 51.

    Keplinger, C., Sun, J.Y., Foo, C.C., Rothemund, P., Whitesides, G.M., Suo, Z.: Stretchable, transparent, ionic conductors. Science. 341(6149), 984–987 (2013)

    Article  Google Scholar 

  52. 52.

    Kim K.J.: Last twenty-five years of effort in developing fabrication-methods of IPMCs, Paper No. 10594-9, and I Anderson (Eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO (2018)

  53. 53.

    Kim, J., Oh, I.-K.: Bio-inspired high-performance artificial muscles using 3D-networked carbon nanostructures, Paper No. 10594-49, and Anderson I. (eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO (2018)

  54. 54.

    Kim, K.J., Palmre, V., Stalbaum, T., Hwang, T., Shen, Q., Trabia, S.: Promising developments in marine applications with artificial muscles: electrodeless artificial cilia microfibers. Mar. Technol. Soc. J. 50, 24–34 (2016). https://doi.org/10.4031/MTSJ.50.5.4

    Article  Google Scholar 

  55. 55.

    Kim, Y., Yuk, H., Zhao, R., Chester, S.A., Zhao, X.: Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 558(7709), 274–279 (2018) https://www.nature.com/articles/s41586-018-0185-0. Accessed March 14, 2019

  56. 56.

    Kofod, G.: Dielectric elastomer actuators, Ph.D. thesis The Technical University of Denmark, available at: www.risoe.dk/rispubl/pol/polpdf/ris-r-1286.pdf (2001)

  57. 57.

    Koh, S.J.A., Li, T., Zhou, J., Zhao, X., Hong, W., Zhu, J., Suo, Z.: Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. B Polym. Phys. 49(7), 504–515 (2011)

    Article  Google Scholar 

  58. 58.

    Koh, S.J.A., Keplinger, C., Kaltseis, R., Foo, C.-C., Baumgartner, R., Bauer, S., Suo, Z.: High-performance electromechanical transduction using laterally-constrained dielectric elastomers part I: actuation processes. J. Mech. Phys. Solids. 105, 81–94 (2017)

    Article  Google Scholar 

  59. 59.

    Kovacs, G.M.: Manufacturing polymer transducers: opportunities and challenges, Paper No. 10594-7, and Anderson, I. (eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO (2018)

  60. 60.

    Kovacs, G., Lochmatter, P., Wissler, M.: An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater. Struct. 16(2), S306–S317 (2007)

    Article  Google Scholar 

  61. 61.

    Kovacs, G., During, L., Michel, S., Terrasi, G.: Stacked dielectric elastomer actuator for tensile force transmission. Sensors Actuators A Phys. 155(2), 299–307 (2009)

    Article  Google Scholar 

  62. 62.

    Kuhn W., B. Hargitay, A. Katchalsky, and H. Eisenberg, Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature. 165, (1950) pp. 514–516. https://www.nature.com/articles/165514a0 (Access date - March 14, 2019)

  63. 63.

    Li, T., Li, G., Liang, Y., Cheng, T., Dai, J., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y., Xie, T., Yang, W.: Fast-moving soft electronic fish. Sci. Adv. 3(4), e1602045 (2017)

    Article  Google Scholar 

  64. 64.

    Lotz, P., Matysek, M., Schlaak, H.F.: Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16(1), 58–66 (2011)

    Article  Google Scholar 

  65. 65.

    Lovinger, A.: Ferroelectric polymers. Science. 220, 1115–1121 (1983)

    Article  Google Scholar 

  66. 66.

    Maas, J., Tepel, D., Hoffstadt, T.: Actuator design and automated manufacturing process for DEAP-based multilayer stack-actuators. Meccanica. 50(11), 2839–2854 (2015)

    Article  Google Scholar 

  67. 67.

    Mabboux, P., Gleason, K.: F-19 NMR characterization of electron beam irradiated vinyllidene fluoride-trifluoroethylene copolymers. J. Fluor. Chem. 113, 27 (2002)

    Article  Google Scholar 

  68. 68.

    Madden J. D. W., (2018), “25 years of conducting polymer actuators: history, mechanisms, applications, and prospects”, Paper No. 10594-2, and I Anderson (Eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO.

  69. 69.

    Madden, J.D.W., Madden, P.G.A., Hunter, I.W.: Characterization of polypyrrole actuators: modeling and performance. Proceedings of 3th Annual SPIE Electroactive Polymer Actuators and Devices (EAPAD) Conf., Y. Bar-Cohen (Ed.), SPIE Press, pp. 72–83 (2001)

  70. 70.

    Madsen, F.B., Daugaard, A.E., Hvilsted, S., Skov, A.L.: The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 37(5), 378–413 (2016)

    Article  Google Scholar 

  71. 71.

    McGovern, S.T., Abbot, M., Emery, R., Alici, G., Truong, V.-T., Spinks, G.M., Wallace, G.G.: Evaluation of thrust force generated for a robotic fish propelled with polypyrrole actuators. Polym. Int. 59(3), 357–364 (2010)

    Article  Google Scholar 

  72. 72.

    McKay, T.G., Calius, E., Anderson, I.A.: The dielectric constant of 3M VHB: a parameter in dispute. Proc. SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD) 2009, 72870P (2009);

  73. 73.

    Mirfakhrai, T., Oh, J., Kozlov, M., Fok, E.C.W., Zhang, M., Fang, S., Baughman, R.H., Madden, J.D.: Carbon nanotube yarns as high load actuators and sensors. Adv. Sci. Technol. 61, 65–74 (2008)

    Article  Google Scholar 

  74. 74.

    Mirvakili, S.M., Ravandi, A.R., Hunter, I.W., Haines, C.S., Foroughi, N.L.J., Naficy, S., Spinks, G.M., Baughman, R.H., Madden, J.D.W.: Simple and strong: twisted silver painted nylon artificial muscle actuated by Joule heating”. Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD) 90560I. doi: https://doi.org/10.1117/12.2046411 (2014)

  75. 75.

    Moretti, G., Papini, G.P.R., Righi, M., Forehand, D., Ingram, D., Vertechy, R., Fontana, M.: Resonant wave energy harvester based on dielectric elastomer generator. Smart Mater. Struct. 27, (2018). https://doi.org/10.1088/1361-665X/aaab1e 14 pages

  76. 76.

    Nalwa, H.S. (ed.): Ferroelectric Polymers – Chemistry, Physics, and Applications. Marcel Dekker, Inc., ISBN 0–8247–9468-0, New York (1995)

    Google Scholar 

  77. 77.

    Nemat-Nasser, S., Thomas, C.W.: Ionomeric polymer-metal composites, Ch. 6, in [Bar-Cohen, Y., 2004], pp. 171–230

  78. 78.

    Oguro, K., Kawami, Y., Takenaka, H.: Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. Trans J Micromach Soc. 5, 27–30 (1992)

  79. 79.

    Ohigashi, H.: Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method. J. Appl. Phys. 47(3), 949 (1976). https://doi.org/10.1063/1.322685

    Article  Google Scholar 

  80. 80.

    Olsen, Z., Kim, K.J.: An IPMC modeling approach for computational efficiency and rapid design development, Paper No. 10594-11, and Anderson, I. (eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO. (2018)

  81. 81.

    Opris, D.M.: Polar elastomers as novel materials for electromechanical actuator applications. Adv. Mater. 30(5), 1703678 (2018)

    Article  Google Scholar 

  82. 82.

    Osada, Y.: Chemical valves and gel actuators. Adv. Mater. 3(2), 107–108 (1991). https://doi.org/10.1002/adma.19910030209

    Article  Google Scholar 

  83. 83.

    Osada, Y., Kishi, R.: Reversible volume change of microparticles in an electric field. J. Chem. Soc. 85(3), 655–662 (1989)

    Google Scholar 

  84. 84.

    Otero, T.F., Rodriguez, J., Angulo, E., Santamaria, C.: Artificial muscles from bilayer structures. Synth. Met. 55-57, 3713–3717 (1993)

    Article  Google Scholar 

  85. 85.

    Otero, T.F., Grande, H., Rodriguez, J.: A new model for electrochemical oxidation of polypyrrole under conformational relaxation control. J. Electroanal. Chem. 394, 211–216 (1995)

    Article  Google Scholar 

  86. 86.

    Park, I.-S., Jung, K., Kim, D.S.M., Kim, K.J.: Physical principles of ionic polymer-metal composites as electroactive actuators and sensors. Special Issue dedicated to EAP, Materials Research Society (MRS) Bulletin, 33(3), 190–195 (2008)

  87. 87.

    Pei, Q., Inganas, O.: Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J. Phys. Chem. 96, 10507–10514 (1992)

    Article  Google Scholar 

  88. 88.

    Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors Actuators A Phys. 64(1), 77–85 (1998a). https://doi.org/10.1016/S0924-4247(97)01657-9

    Article  Google Scholar 

  89. 89.

    Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science. 287(5454), 836–839 (2000)

    Article  Google Scholar 

  90. 90.

    Pelrine, R., Kornbluh, R.D., Pei, Q.: Dielectric elastomers: past, present, and potential future, Paper 10594-4, Bar-Cohen, Y., Anderson, I. (eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO (2018)

  91. 91.

    Poncet, P., Casset, F., Latour, A., Santos, F.D.D., Pawlak, S., Gwoziecki, R., Devos, A., Emery, P., Fanget, S.: Static and dynamic studies of electro-active polymer actuators and integration in a demonstrator. Actuators. 6(2), 18 (2017). https://doi.org/10.3390/act6020018

    Article  Google Scholar 

  92. 92.

    Poulin, A., Imboden, M., Sorba, F., Grazioli, S., Martin-Olmos, C., Rosset, S., Shea, H.: An ultra-fast mechanically active cell culture substrate. Sci. Rep. 8(1), 9895 (2018)

    Article  Google Scholar 

  93. 93.

    Price, A.D., Naguib, H.E., Amara, F.B.: Electroactive polymer actuators for active optical components. J. Intell. Mater. Syst. Struct. 1–9 (2014). https://doi.org/10.1177/1045389X14557505

  94. 94.

    Qu, L., Peng, Q., Dai, L., Spinks, G.M., Wallace, G.G., Baughman, R.H.: Carbon nanotube electroactive polymers: opportunities and challenges”. Special Issue dedicated to EAP, Materials Research Society (MRS) Bulletin 33(3), 215–234 (2008)

  95. 95.

    Rasmussen, L., Erickson, C.J., Meixler, L.D.: The development of electrically driven mechanochemical actuators that act as artificial muscle, Proceedings of the SPIE Electroactive Polymers and Devises (EAPAD), vol. 7287, pp. 7287E1-72871E-13 (2009)

  96. 96.

    Ribeiro, F.B., Plesse, C., Nguyen, G.T.M., Morozova, S.M., Nesmeyanov, A.N., Drockenmuller, E., Shaplov, A.S., Vidal, F.: All-solid-state ionic actuator based on polymeric ionic liquids and electronic conducting polymer”, Paper No. 10594-51, and I Anderson (Eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO (2018)

  97. 97.

    Roentgen, W.C.: About the changes in shape and volume of dielectrics caused by electricity, Section III. In: Wiedemann, G. (ed.) Annual Physics and Chemistry Series, vol. 11, pp. 771–786. John Ambrosius Barth Publisher, Leipzig (1880) (In German)

    Google Scholar 

  98. 98.

    Rosset, S., Shea, H.R.: Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A Mater. Sci. Process. 110(2), 281–307 (2013)

    Article  Google Scholar 

  99. 99.

    Rosset, S., Shea, H.R.: Small, fast, and tough: shrinking down integrated elastomer transducers. Appl. Phys. Rev. 3(3), 031105 (2016)

    Article  Google Scholar 

  100. 100.

    Sacerdote, M.P.: On the electrical deformation of isotropic dielectric solids. J. Phys. 3, Series, t, VIII, 31: 282–285 (1899)

  101. 101.

    Sadeghipour, K., Salomon, R., Neogi, S.: Development- of a novel electrochemically active membrane and ‘amart’ material based vibration sensor/damper. J. Smart Mater. Struct. 1(1), 172–179 (1992)

    Article  Google Scholar 

  102. 102.

    Sansiñena, J.M., Olazabal, V.: Conductive polymers, Ch. 7, in [Bar-Cohen, Y., 2004], pp. 231–259

  103. 103.

    Senders, C.W., Tollefson, T.T., Curtiss, S., Wong-Foy, A., Prahlad, H.: Force requirements for artificial muscle to create an eyelid blink with eyelid sling. Arch. Facial Plast. Surg. 12(1), 30–36 (2010). https://doi.org/10.1001/archfacial.2009.111

    Article  Google Scholar 

  104. 104.

    Sessler, G.M.: Piezoelectricity in polyvinylidenefluoride. J. Acoust. Soc. Am. 70(6), 1596–1608 (1981)

    Article  Google Scholar 

  105. 105.

    Shahinpoor, M.: Elastically-activated artificial muscles made with liquid crystal elastomers, Bar-Cohen, Y. (ed.), Proceedings of the SPIE’s 7th Annual International Symposium on Smart Structures and Materials, EAPAD Conf. Vol. 3987, ISBN 0–8194–3605-4 (2000), pp. 187–192

  106. 106.

    Shintake, J., Rosset, S., Schubert, B., Floreano, D., Shea, H.: Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28, (2016). https://doi.org/10.1002/adma.201504264

  107. 107.

    Shrestha, M., Asundi, A., Lau, G.K.: Electrically tunable window based on microwrinkled ZnO/Ag thin film, ISBN: 9781510608115, Proceedings of the SPIE, vol 10163, id. 101631Y 7 pp ((2017). https://doi.org/10.1117/12.2259918

  108. 108.

    Smela E., “Conjugated polymer actuators,” Special Issue dedicated to EAP, Materials Research Society (MRS) Bulletin, Vol. 33, No. 3, (2008), pp. 197–204

  109. 109.

    Spinks, G.M., Wallace, G.G., Baughman, R.H., Dai, L.: Carbon nanotube actuators: synthesis, properties and performance, Ch. 8, in [Bar-Cohen, 2004], pp. 261–295

  110. 110.

    Stalbaum, T., Trabia, S., Hwang, T., Olsen, Z., Nelson, S., Shen, Q., Lee, D.-C., Kim, K.J., Carrico, J., Leang, K.K., Palmre, V., Nam, J., Park, I., Tiwari, R., Kim, D., Kim, S.: Guidelines for making ionic polymer-metal composite (IPMC) materials as artificial muscles by advanced manufacturing methods: state-of-the-art, Chapter 15. In: Bar-Cohen, Y. (ed.) Advances in Manufacturing and Processing of Materials and Structures, pp. 377–394. CRC Press, Taylor & Francis Group, Boca Raton (2018)

    Chapter  Google Scholar 

  111. 111.

    Solano-Arana, S., Klug, F., Mößinger, H., Förster-Zügel, F., Schlaak, H.F.: A novel application of dielectric stack actuators: a pumping micromixer. Smart Mater Struct 27 (7), 074008 (2018)

  112. 112.

    Su, J.: A review of electrostrictive graft elastomers: structures, properties, and applications, Paper No. 10594-23, Y. Bar-Cohen and I Anderson (Eds.), Proceedings of the EAPAD Conference, SPIE Smart Structures and Materials Symp., Held in Denver, CO. (2018)

  113. 113.

    Su J., J. S. Harrison, T. St. Clair, Y. Bar-Cohen, and S. Leary, “Electrostrictive graft elastomers and applications”. MRS Symp. Proceedings, Vol. 600, Warrendale, PA, (1999) pp. 131–136

  114. 114.

    Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sini. 23(6), 549–578 (2010)

    Article  Google Scholar 

  115. 115.

    Suzuki, M., Kamamichi, N.: Control of twisted and coiled polymer actuator with anti-windup compensator. Smart Mater. Struct. 27(7), (2018)

  116. 116.

    Taghavi, M., Helps, T., Rossiter, J.: Electro-ribbon actuators and electro-origami robots. Sci. Robotics. 3(25), eaau9795 (2018)

    Article  Google Scholar 

  117. 117.

    Tan, N.N., Dobashi, Y., Soyer, C., Plesse, C., Nguyen, G., Vidal, F., Cattan, E., Grondel, S., Madden, J.D.W.: Non-linear dynamic modeling of ultrathin conducting polymer actuators including inertial effects. Smart Mater. Struct. 27(11), 115032 (2018). https://doi.org/10.1088/1361-665X/aae456

    Article  Google Scholar 

  118. 118.

    Thomson, G., Lai, Z., Val, D.V., Yurchenko, D.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019)

    Article  Google Scholar 

  119. 119.

    Tiwari, R., Kim, K.J.: IPMC as a mechanoelectric energy harvester: tailored properties. Smart Mater. Struct. 22(1), 015017 (2013)

    Article  Google Scholar 

  120. 120.

    Wada, Y.: Piezoelectricity and pyroelectricity of polymers. Jpn. J. Appl. Phys. 15, 2041–2057 (1976)

    Article  Google Scholar 

  121. 121.

    Wang, T., Farajollahi, M., Choi, Y.S., Lin, I.-T., Marshall, J.E., Thompson, N.M., Kar-Narayan, S., Madden, J.D.W., Smoukov, S.K.: Electroactive polymers for sensing. Interface Focus, Royal Society Publishing. 6(4), (2016). https://doi.org/10.1098/rsfs.2016.0026

  122. 122.

    Watanabe, M., Imaizumi, S., Yasuda, T., Kokubo, H.: Ion gels for ionic polymer actuators. in Soft Actuators: Materials, Modeling, Applications, and Future Perspectives, edited by Kinji Asaka and Hidenori Okuzaki (Springer Japan, Tokyo, 2014), 141-156https://link.springer.com/book/10.1007/978-4-431-54767-9 (2014). https://doi.org/10.1007/978-4-431-54767-9

  123. 123.

    Wissler, M. “Modeling dielectric elastomer actuators,” Dr. sc. thesis (ETH, Zurich, 2007), available at: www.empa.ch/plugin/template/empa/ */78910

  124. 124.

    Wu, L., Andrade, M.J., Rome, R.S., Haines, C., Lima, M.D., Baughman, R.H., Tadesse,Y.: Nylon-muscle-actuated robotic finger. Proc. SPIE 9431, Electroactive Polymer Actuators and Devices (EAPAD), I-1-12 (2015)

  125. 125.

    Yildirim, Y.A., et al.: Piezoelectric membrane actuators for micropump applications using PVDF-TrFE. J. Microelectromech. Syst. 27(1), 86–94 (2018)

    Article  Google Scholar 

Internet references

  1. Books and proceedings: http://ndeaa.jpl.nasa.gov/nasa-nde/yosi/yosi-books.htm

  2. WW-EAP Webhub: http://eap.jpl.nasa.gov

  3. WW-EAP Newsletter: http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/WW-EAP-Newsletter.html

  4. EAP Conferences: http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/eap-conferences.htm

  5. Armwrestling Challenge: http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-armwrestling.htm

  6. Information about the process of making the leading EAP materials http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-recipe.htm

  7. Sources of obtaining EAP materials http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-material-n-products.htm

  8. Research at Xuanhe Zhao’s lab (Magnetic 3-D-printed structures crawl, roll, jump, and play catch): http://news.mit.edu/2018/magnetic-3-d-printed-structures-crawl-roll-jump-play-catch-0613

Download references

Acknowledgements

Some of the research reported in this manuscript was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with National Aeronautics and Space Administration (NASA). The authors would like thank Samuel Rosset, The University of Auckland, New Zealand, for his comments and suggestions that helped improve the paper. Also, the authors would like thank the many individuals’ who contributed to the field of EAP and apologize to those whose publications have not been referenced.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoseph Bar-Cohen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bar-Cohen, Y., Anderson, I.A. Electroactive polymer (EAP) actuators—background review. Mech Soft Mater 1, 5 (2019). https://doi.org/10.1007/s42558-019-0005-1

Download citation

Keywords

  • EAP
  • Electroactive polymers
  • Activatable polymers
  • Biologically inspired technologies
  • Biomimetics
  • Robotics