Skip to main content
Log in

The effect of local inertia around the crack-tip in dynamic fracture of soft materials

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

Phase-field or gradient-damage approaches offer elegant ways to model cracks. Material stiffness decreases in the cracked region with the evolution of the phase-field or damage variable. This variable and, consequently, the decreased stiffness are spatially diffused, which essentially means the loss of the internal links and the bearing capacity of the material in a finite region. Considering the loss of material stiffness without the loss of inertial mass seems to be an incomplete idea when dynamic fracture is considered. Loss of the inertial mass in the damaged material region may have significant effect on the dynamic failure processes. In the present work, dynamic fracture is analyzed using a theory, which takes into account the local loss of both material stiffness and inertia. Numerical formulation for brittle fracture at large deformations is based on the Cosserat point method, which allows suppressing the hourglass type deformation modes in simulations. Based on the developed algorithms, the effect of the material inertia around a crack tip is studied. Two different problems with single and multiple cracks are considered. Results suggest that in dynamic fracture the localized loss of mass plays an important role at the crack tip. It is found, particularly, that the loss of inertia leads to lower stresses at the crack tip and, because of that, to narrower cracks as compared to the case in which no inertia loss is considered. It is also found that the regularized problem formulation provides global convergence in energy under the mesh refinement. At the same time, the local crack pattern might still depend on the geometry of the unstructured mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. It should be mentioned here that a higher value of ρcr is used in case II, compared to that in case I. This is because the current value of density is used for the calculation of the stable time increment in case II. Using 𝜖 = 0.001 results in extremely small time steps for elements close to the cracked region, unnecessarily slowing down the simulations. For a few cases, simulations have been performed for similar values of 𝜖 in cases I and II, to ensure that the differences in results between both cases are not only due to different values of ρcr. For S2 results for different values of 𝜖 are shown in Fig. 17 in Appendix 2.

References

  1. Agrawal, V., Dayal, K.: Dependence of equilibrium griffith surface energy on crack speed in phase-field models for fracture coupled to elastodynamics. Int. J. Fract. 207(2), 243–249 (2017)

    Article  Google Scholar 

  2. Barenblatt, G.I.: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J. Appl. Math. Mech. 23(3), 622–636 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belytschko, T., Bindeman, L.: Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput. Methods Appl. Mech. Eng. 88(3), 311–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko, T., Bindeman, L.P.: Assumed strain stabilization of the eight node hexahedral element. Comput. Methods Appl. Mech. Eng. 105(2), 225–260 (1993)

    Article  MATH  Google Scholar 

  5. Benzerga, A.A., Leblond, J.B., Needleman, A., Tvergaard, V.: Ductile failure modeling. Int. J. Fract. 201(1), 29–80 (2016)

    Article  Google Scholar 

  6. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217, 77–95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33(20-22), 2899–2938 (1996)

    Article  MATH  Google Scholar 

  8. Chen, C.H., Bouchbinder, E., Karma, A.: Instability in dynamic fracture and the failure of the classical theory of cracks. Nat. Phys. 13(12), 1186 (2017)

    Article  Google Scholar 

  9. De Borst, R.: Some recent issues in computational failure mechanics. Int. J. Numer. Methods Eng. 52(1-2), 63–95 (2001)

    Article  Google Scholar 

  10. De Borst, R, Van Der Giessen, E: Material Instabilities in Solids. Wiley, Chichester (1998)

    Google Scholar 

  11. Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dorfmann, A., Ogden, R.W.: A constitutive model for the mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41(7), 1855–1878 (2004)

    Article  MATH  Google Scholar 

  13. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gong, B., Paggi, M., Carpinteri, A.: A cohesive crack model coupled with damage for interface fatigue problems. Int. J. Fract. 173(2), 91–104 (2012)

    Article  Google Scholar 

  15. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99(1), 2–15 (1977)

    Article  Google Scholar 

  16. Hofacker, M., Miehe, C.: Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int. J. Fract. 178(1-2), 113–129 (2012)

    Article  Google Scholar 

  17. Jabareen, M., Rubin, M.: Hyperelasticity and physical shear buckling of a block predicted by the cosserat point element compared with inelasticity and hourglassing predicted by other element formulations. Comput. Mech. 40(3), 447–459 (2007)

    Article  MATH  Google Scholar 

  18. Kachanov, L.M.: Time of the rupture process under creep conditions, izy akad. Nank SSR Otd Tech Nauk 8, 26–31 (1958)

    Google Scholar 

  19. Karma, A., Kessler, D.A., Levine, H.: Phase-field model of mode iii dynamic fracture. Phys. Rev. Lett. 87(4), 045,501 (2001)

    Article  Google Scholar 

  20. Klein, P., Gao, H.: Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng. Fract. Mech. 61(1), 21–48 (1998)

    Article  Google Scholar 

  21. Lasry, D., Belytschko, T.: Localization limiters in transient problems. Int. J. Solids Struct. 24(6), 581–597 (1988)

    Article  MATH  Google Scholar 

  22. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  23. Menzel, A., Steinmann, P.: A theoretical and computational framework for anisotropic continuum damage mechanics at large strains. Int. J. Solids Struct. 38(52), 9505–9523 (2001)

    Article  MATH  Google Scholar 

  24. Mtanes, E., Jabareen, M.: A plane strain quadrilateral cosserat point element (cpe) for nonlinear orthotropic elastic materials: An extension to initially distorted geometry and general orthotropic directions. Finite Elem. Anal. Des. 87, 10–21 (2014)

    Article  MathSciNet  Google Scholar 

  25. Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54(3), 525–531 (1987)

    Article  MATH  Google Scholar 

  26. Needleman, A.: Some issues in cohesive surface modeling. Procedia IUTAM 10, 221–246 (2014)

    Article  Google Scholar 

  27. Park, K., Paulino, G.H., Roesler, J.R.: A unified potential-based cohesive model of mixed-mode fracture. J. Mech. Phys. Solids 57(6), 891–908 (2009)

    Article  Google Scholar 

  28. Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P.: Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39, 3391–3403 (1996)

    Article  MATH  Google Scholar 

  29. Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P., Spee, I.: Some observations on localisation in non-local and gradient damage models. Eur. J. Mech. A. Solids 15(6), 937–953 (1996)

    MATH  Google Scholar 

  30. Peerlings, R.H.J., Brekelmans, W.A.M., De Borst, R., Geers, M.G.D.: Softening, singularity and mesh sensitivity in quasi-brittle and fatigue damage, in nonlocal aspects in solid mechanics. In: Proceedings of EUROMECH Colloquium, vol. 378, pp 94–99 (1998)

  31. Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., Geers, M.G.D.: Localisation issues in local and nonlocal continuum approaches to fracture. Eur. J. Mech. A. Solids 21(2), 175–189 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pian, T.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20(9), 1685–1695 (1984)

    Article  MATH  Google Scholar 

  33. Pijaudier-Cabot, G., Bažant, Z.P.: Nonlocal damage theory. J. Eng. Mech. 113(10), 1512–1533 (1987)

    Article  MATH  Google Scholar 

  34. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4), 475–482 (2000)

    Article  Google Scholar 

  35. Rice, J.R., Wang, J.S.: Embrittlement of interfaces by solute segregation. Mater. Sci. Eng. A 107, 23–40 (1989)

    Article  Google Scholar 

  36. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simo, J., Armero, F., Taylor, R.: Improved versions of assumed enhanced strain tri-linear elements for 3d finite deformation problems. Comput. Methods Appl. Mech. Eng. 110(3-4), 359–386 (1993)

    Article  MATH  Google Scholar 

  38. Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60(2), 153–173 (1987)

    Article  MATH  Google Scholar 

  39. Simo, J.C., Armero, F.: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 33(7), 1413–1449 (1992)

    Article  MATH  Google Scholar 

  40. Taylor, RL: FEAP - finite element analysis program. http://www.ce.berkeley/feap (2014)

  41. Taylor, RL: FEAP - finite element analysis program: Version 8.4 programmer manual. http://www.ce.berkeley/feap/pmanual84.pdf (2014)

  42. Taylor, R.L.: FEAP - finite element analysis program: Version 8.4 user manual. http://www.ce.berkeley/feap/manual84.pdf (2014)

  43. Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40(6), 1377–1397 (1992)

    Article  MATH  Google Scholar 

  44. Volokh, K.Y.: Nonlinear elasticity for modeling fracture of isotropic brittle solids. J. Appl. Mech. 71(1), 141–143 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Volokh, K.Y.: Hyperelasticity with softening for modeling materials failure. J. Mech. Phys. Solids 55(10), 2237–2264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Volokh, K.Y.: Review of the energy limiters approach to modeling failure of rubber. Rubber Chem. Technol. 86(3), 470–487 (2013)

    Article  Google Scholar 

  47. Volokh, K.Y.: Mechanics of Soft Materials. Springer, Singapore (2016)

    Google Scholar 

  48. Volokh, K.Y.: Fracture as a material sink. Materials Theory 1(1), 3 (2017)

    Article  Google Scholar 

  49. Voyiadjis, G.Z., Kattan, P.I.: A plasticity-damage theory for large deformation of solids-I. theoretical formulation. Int. J. Eng. Sci. 30(9), 1089–1108 (1992)

    Article  MATH  Google Scholar 

  50. Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Mahmood Jabareen for introducing them to the CPE formulation and the valuable discussion on it.

Funding

The authors acknowledge the support from the Israel Science Foundation, grant No. ISF-198/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Faye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Results for coarse mesh

Table 4 Details of the meshes S4 and S5
Fig. 15
figure 15

Coarse meshes for single crack problem. Thick red lines indicate the initial cracks

Appendix 2. Effect of critical density on crack propagation

Using similar values of 𝜖 in cases I and II, crack propagation for mesh S2 is compared in Fig. 17. For case I, higher value of 𝜖 results in a slightly thicker crack, whereas, for case II, it changes the crack growth pattern.

Fig. 16
figure 16

Mode-I crack problem—case I: contours of ρ/ρ0 for S4 and S5 showing crack growth after the interaction of top and bottom cracks. Initial crack is shown by a thick black line

Fig. 17
figure 17

Effect of critical density on crack growth pattern in mesh S2 for cases I and II. Initial crack is shown by a thick black line

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faye, A., Lev, Y. & Volokh, K.Y. The effect of local inertia around the crack-tip in dynamic fracture of soft materials. Mech Soft Mater 1, 4 (2019). https://doi.org/10.1007/s42558-019-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-019-0004-2

Keywords

Navigation