Skip to main content
Log in

Solvability and thermal response of cellulose with different crystal configurations

  • Research Article
  • Published:
Frontiers of Engineering Management Aims and scope Submit manuscript

Abstract

Cellulose is a biodegradable and renewable natural material that it is naturally resistant to breaking and modification. Moreover, the crystalline structure of cellulose is a major factor restricting its industrial utilization. In this study, cellulose polymorphs were prepared from natural cellulose, and their solvability and thermal response were investigated. Using liquid- and solid-state NMR signals, the distinct types and dissolving states of cellulose polymorphs were identified. The thermal behavior of the polymorphic forms of cellulose-d was also evaluated, and cellulose II exhibited the poorest thermal stability and a unique exothermic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashraf M T, Thomsen M H, Schmidt J E (2017). Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions. Bioresource Technology, 238: 369–378

    Article  Google Scholar 

  • Balat M (2008). Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 30(7): 620–635

    Google Scholar 

  • Bertran M S, Dale B E (1986). Determination of cellulose accessibility by differential scanning calorimetry. Journal of Applied Polymer Science, 32(3): 4241–4253

    Article  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006). Dilute solution properties of cellulose in LiOH/urea aqueous system. Journal of Polymer Science. Part B, Polymer Physics, 44(21): 3093–3101

    Article  Google Scholar 

  • Cai J, Zhang L N, Liu S L, Liu Y T, Xu X J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S (2008). Dynamic self–assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules, 41(23): 9345–9351

    Article  Google Scholar 

  • Cai J, Zhang L N, Zhou J P, Li H, Chen H, Jin H M (2004). Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromolecular Rapid Communications, 25(17): 1558–1562

    Article  Google Scholar 

  • Chen J H, Wang K, Xu F, Sun R C (2014). Progress of preparing regenerated cellulose fibers using novel dissolution process. CIESC Journal, 65: 4213–4221

    Google Scholar 

  • Chen X, Chen J, You T, Wang K, Xu F (2015). Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydrate Polymers, 125: 85–91

    Article  Google Scholar 

  • Chen X M, Burger C, Fang D F, Ruan D, Zhang L N, Hsiao B S, Chu B (2006). X–ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer, 47 (8): 2839–2848

    Article  Google Scholar 

  • Cheng G, Varanasi P, Li C, Liu H, Melnichenko Y B, Simmons B A, Kent M S, Singh S (2011). Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules, 12(4): 933–941

    Article  Google Scholar 

  • Egal M, Budtova T, Navard P (2008). The dissolution of microcrystalline cellulose in sodium hydroxide–urea aqueous solutions. Cellulose (London, England), 15(3): 361–370

    Google Scholar 

  • Himmel ME, Ding S Y, Johnson D K, Adney WS, Nimlos MR, Brady J W, Foust T D (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813): 804–807

    Article  Google Scholar 

  • Huang H, Liu Y, Chao M A, Jiyou G U (2016). Research progress in the application of cellulose and its derivatives. Materials Review, 21: 75–82

    Article  Google Scholar 

  • Idström A, Schantz S, Sundberg J, Chmelka B F, Gatenholm P, Nordstierna L (2016). (13)C NMR assignments of regenerated cellulose from solid–state 2D NMR spectroscopy. Carbohydrate Polymers, 151: 480–487

    Article  Google Scholar 

  • Ishikawa A, Okano T, Sugiyama J (1997). Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 38(2): 463–468

    Article  Google Scholar 

  • Isogai A (1997). NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose (London, England), 4(2): 99–107

    MathSciNet  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla R H (1989). Solid–state CP/MAS carbon–13 NMR study of cellulose polymorphs. Macromolecules, 22(7): 3168–3172

    Article  Google Scholar 

  • Jeoh T, Ishizawa C I, Davis M F, Himmel M E, Adney W S, Johnson D K (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering, 98(1): 112–122

    Article  Google Scholar 

  • Jin F, Zhang J, Chen W, Fan Q, Bai Z (2012). Preparation and chiral recognition of new chiral stationary phases derived from cellulose microspheres. Wuhan University Journal of Natural Sciences, 17(3): 205–210

    Article  Google Scholar 

  • Jin H, Zha C, Gu L (2007). Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research, 342(6): 851–858

    Article  Google Scholar 

  • Junior J L P (2000). Effect of cellulose crystallinity on the progress of thermal oxidative degradation of paper. Journal of Applied Polymer Science, 78: 61–66

    Article  Google Scholar 

  • Kono H, Erata T, Takai M (2003). Complete assignment of the CP/MAS 13C NMR spectrum of cellulose IIII. Macromolecules, 36(10): 3589–3592

    Article  Google Scholar 

  • Kumar P, Barrett D M, Delwiche M J, Stroeve P (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48 (8): 3713–3729

    Article  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999). A revised structure and hydrogen–bonding system in cellulose II from a neutron fiber diffraction analysis. Journal of the American Chemical Society, 121 (43): 9940–9946

    Article  Google Scholar 

  • Lennholm H, Larsson T, Iversen T (1994). Determination of cellulose I [alpha] and I[beta] in lignocellulosic materials. Carbohydrate Research, 261(1): 119–131

    Article  Google Scholar 

  • Liebert T, Heinze T, Edgar K J (2010). Cellulose solvents: For analysis, shaping and chemical modification. Journal of the American Chemical Society, 132: 17976–17976

    Article  Google Scholar 

  • Liitiä T, Maunu S L, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid–state NMR spectroscopic methods. Cellulose (London, England), 10(4): 307–316

    Google Scholar 

  • Lou Y R, Kanninen L, Kuisma T, Niklander J, Noon L A, Burks D, Urtti A, Yliperttula M (2014). The use of nanofibrillar cellulose hydrogel as a flexible three–dimensional model to culture human pluripotent stem cells. Stem Cells and Development, 23(4): 380–392

    Article  Google Scholar 

  • Luo X, Zhang L (2010). Immobilization of penicillin G acylase in epoxy–activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules, 11(11): 2896–2903

    Article  Google Scholar 

  • Madaeni S S, Heidary F (2011). Improving separation capability of regenerated cellulose ultrafiltration membrane by surface modification. Applied Surface Science, 257(11): 4870–4876

    Article  Google Scholar 

  • Moigne N L, Navard P (2010). Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose (London, England), 17(1): 31–45

    Google Scholar 

  • Mori T, Chikayama E, Tsuboi Y, Ishida N, Shisa N, Noritake Y, Moriya S, Kikuchi J (2012). Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydrate Polymers, 90(3): 1197–1203

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6): 673–686

    Article  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004). All–cellulose composite. Macromolecules, 37(20): 7683–7687

    Article  Google Scholar 

  • Perlack R D, Wright L L, Turhollow A F, Graham R L, Stokes B J, Erbach D C (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion–ton annual supply. Oak Ridge National Lab TN, doi: 10.2172/885984

    Google Scholar 

  • Qin X, Lu A, Cai J, Zhang L (2013a). Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 92(2): 1315–1320

    Article  Google Scholar 

  • Qin X, Lu A, Zhang L (2013b). Gelation behavior of cellulose in NaOH/urea aqueous system via cross–linking. Cellulose (London, England), 20(4): 1669–1677

    Google Scholar 

  • Sarko A (1978). What is the crystalline structure of cellulose? Technical Association of the Pulp and Paper Industry, Tappi

    Google Scholar 

  • Segal L, Creely J J, Martin A E Jr, Conrad C M (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X–ray diffractometer. Textile Research Journal, 29(10): 786–794

    Google Scholar 

  • Teng N, Ni J, Chen H Z, Ren Q H, Na H N, Liu X Q, Zhang R Y, Zhu J (2016). Initiating highly effective hydrolysis of regenerated cellulose by controlling transition of crystal form with sulfolane under microwave radiation. ACS Sustainable Chemistry & Engineering, 4 (3): 1507–1511

    Google Scholar 

  • Tsarevsky N V, Bernaerts K, Dufour B, Prez F D, Matyjaszewski K (2004). Well–defined (Co) polymers with 5–vinyltetrazole units via combination of atom transfer radical (Co) polymerization of acrylonitrile and “click chemistry”–type postpolymerization modification. Macromolecules, 37(25): 9308–9313

    Article  Google Scholar 

  • Wang J, Lin X, Luo X, Yao W (2015). Preparation and characterization of the linked lanthanum carboxymethylcellulose microsphere adsorbent for removal of fluoride from aqueous solutions. RSC Advances, 5(73): 59273–59285

    Article  Google Scholar 

  • Wang L H, Wang Y L, Zhao X S, Han Z (2013). Comparative study on the method of extracting straw cellulose. Zhongguo Nongxue Tongbao, 29: 130–134 (in Chinese)

    Google Scholar 

  • Wang T, Phyo P, Hong M (2016). Multidimensional solid–state NMR spectroscopy of plant cell walls. Solid State Nuclear Magnetic Resonance, 78: 56–63

    Article  Google Scholar 

  • Wang Y, Deng Y (2009). The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnology and Bioengineering, 102(5): 1398–1405

    Article  Google Scholar 

  • Yang B, Wyman C E (2008). Pretreatment: The key to unlocking lowcost cellulosic ethanol. Biofuels, Bioproducts & Biorefining, 2(1): 26–40

    Article  Google Scholar 

  • Yui T, Okayama N, Hayashi S (2010). Structure conversions of cellulose IIII crystal models in solution state: A molecular dynamics study. Cellulose (London, England), 17(4): 679–691

    Google Scholar 

  • Zhang J Q, Lin L, Sun Y, Mitchell G, Liu S J (2008). Advance of studies on structure and decrystallization of cellulose. Linchan Huaxue Yu Gongye, 28: 109–114 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wang.

Additional information

This work was funded by the National Natural Science Foundation of China (Grant No. 31770622), the Beijing Natural Science Foundation (Grant No. 6174046), the Fundamental Research Funds for the Central Universities (No. 2017PT13) and the China Scholarship Council (International Clean Energy Talent Programme (iCET), Grant No. 201702660054).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zheng, K., Fan, Q. et al. Solvability and thermal response of cellulose with different crystal configurations. Front. Eng. Manag. 6, 62–69 (2019). https://doi.org/10.1007/s42524-019-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42524-019-0001-z

Keywords

Navigation