A Nano-Micro–Macro Multiscale Modeling for Carbon Fiber-Reinforced Graphene/Epoxy Nanocomposites

Abstract

A new nano-micro–macro multiscale modeling approach that combines molecular dynamic (MD) simulations with micromechanics and stochastic continuum models is proposed to model carbon-fiber-reinforced graphene/epoxy nanocomposites. Halpin–Tsai and shear lag micromechanics models are employed to relate elastic properties from MD simulations with graphene morphology (i.e., aspect ratio) and volume fraction. Uncertainties of these parameters are implemented by the Karhunen-Loève expansion (KLE) method, followed by an FE-based homogenization on a representative volume element (RVE) of carbon fiber-reinforced graphene/epoxy nanocomposite system. Elastic properties are homogenized by averaging the ensemble of RVEs with random properties. This multiscale modeling approach can be applied to the integrated computational materials engineering (ICME) for graphene-based nanocomposite materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    https://www.3ds.com/

Abbreviations

l :

Graphene length

t :

Thickness of graphene layers

\(\xi\) :

l/t Aspect ratio of graphene

L i :

Correlation length in i direction

λ i :

iTh eigenvalue of the covariance kernel C

\(p_{i}\) :

iTh eigenfunction of the covariance kernel C

\({\upzeta }\) :

Normal variable

\(\phi_{i}\) :

Volume fraction of phase i

\(\theta_{GNP}\) :

Orientation angle of GNP

\(\varphi_{GNP}\) :

Orientation angle of GNP

\(C_{ijkl}\) :

Deterministic linear elastic constitutive tensor component

\(C_{ijkl}^{{\text{H}}} ( {{\text{x}},\omega } )\) :

Stochastic homogenized linear elastic constitutive tensor component

\(\Omega\) :

Coarse-scale domain

\(\Theta\) :

Fine-scale domain

\(\chi_{p}^{{{\text{kl}}}}\) :

Displacement influence function under coarse-scale strain εkl

\({\text{u}}^{\varepsilon } ( {{\text{x}},{\text{y}}} )\) :

Asymptotically expanded displacement

References

  1. 1.

    B. Arash, Q. Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 4(1), 6479 (2014)

    Article  Google Scholar 

  2. 2.

    A.P. Awasthi, D.C. Lagoudas, D.C. Hammerand, Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics. Model. Simul. Mater. Sci. Eng. 17(1), 015002 (2008)

    Article  Google Scholar 

  3. 3.

    K. Balaji, M. Singh, V. Pathasarthy, C. Park, N.G. Sahoo, G.J. Yun, S. Rana, Disulfide Exchange Assisted Self-healing Epoxy/PDMS/Graphene Oxide Nanocomposites. Nanoscale Adv. 2, 2726–2730 (2020)

    Article  Google Scholar 

  4. 4.

    D. Cho, S. Lee, G. Yang, H. Fukushima, L.T. Drzal, Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol. Mater. Eng. 290(3), 179–187 (2005)

    Article  Google Scholar 

  5. 5.

    H.-I. Choi, F.-Y. Zhu, H. Lim, G.J. Yun, Multiscale stochastic computational homogenization of the thermomechanical properties of woven Cf/SiCm composites. Compos. B Eng. 177, 107375 (2019)

    Article  Google Scholar 

  6. 6.

    R. Christensen, F. Waals, Effective stiffness of randomly oriented fibre composites. J. Compos. Mater. 6(4), 518–532 (1972)

    Article  Google Scholar 

  7. 7.

    I. Chung, M. Cho, Recent studies on the multiscale analysis of polymer nanocomposites. Multisscale Sci. Eng. 1, 167–195 (2019)

    Article  Google Scholar 

  8. 8.

    C.M. Hadden, D.R. Klimek-McDonald, E.J. Pineda, J.A. King, A.M. Reichanadter, I. Miskioglu, S. Gowtham, G.M. Odegard, Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Carbon 95, 100–112 (2015)

    Article  Google Scholar 

  9. 9.

    J. Halpin, S. Tsai, Environmental factors in composite materials design. US Air Force Technical Report AFML TR, 67423, 1967

  10. 10.

    B. Hassani, E. Hinton, A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput. Struct. 69(6), 707–717 (1998)

    MATH  Article  Google Scholar 

  11. 11.

    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991)

    Article  Google Scholar 

  12. 12.

    S. Jeong, H.-J. Lim, F.-Y. Zhu, C. Park, Y. Kim and G. Yun, in Nano-Micro Multiscale Modeling for Graphene-Reinforced Nanocomposites. 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018

  13. 13.

    X.-Y. Ji, Y.-P. Cao, X.-Q. Feng, Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model. Simul. Mater. Sci. Eng. 18(4), 045005 (2010)

    Article  Google Scholar 

  14. 14.

    J. Jung, S. Lee, N.M. Pugno, S. Ryu, Orientation distribution dependence of piezoresistivity of metal nanowire-polymer composite. Multiscale Sci. Eng. 2, 54–62 (2020)

    Article  Google Scholar 

  15. 15.

    D.R. Klimek-McDonald, J.A. King, I. Miskioglu, E.J. Pineda, G.M. Odegard, Determination and modeling of mechanical properties for graphene nanoplatelet/epoxy composites. Polym. Compos. 39(6), 1845–1851 (2018)

    Article  Google Scholar 

  16. 16.

    B. Krishnakumar, R.S.P. Sanka, W.H. Binder, C. Park, J. Jung, V. Parthasarthy, S. Rana, G.J. Yun, Catalyst free self-healable vitrimer/graphene oxide nanocomposites. Compos. Part B Eng. 184, 107647 (2019)

    Article  Google Scholar 

  17. 17.

    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  18. 18.

    X. Lu, J. Yvonnet, F. Detrez, J. Bai, Multiscale modeling of nonlinear electric conductivity in graphene-reinforced nanocomposites taking into account tunnelling effect. J. Comput. Phys. 337, 116–131 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    N. Marzari, M. Ferrari, Textural and micromorphological effects on the overall elastic response of macroscopically anisotropic composites. J. Appl. Mech. Trans. ASME 59(2), 269–275 (1992)

    Article  Google Scholar 

  20. 20.

    A. Montazeri, H. Rafii-Tabar, Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A 375(45), 4034–4040 (2011)

    Article  Google Scholar 

  21. 21.

    B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60, 356–365 (2013)

    Article  Google Scholar 

  22. 22.

    G.M. Odegard, T.S. Gates, K.E. Wise, C. Park, E.J. Siochi, Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63(11), 1671–1687 (2003)

    Article  Google Scholar 

  23. 23.

    A. Parashar, P. Mertiny, Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites. Nanoscale Res. Lett. 7(1), 595 (2012)

    Article  Google Scholar 

  24. 24.

    C. Park, J. Jung, G. Yun, Interfacial characterization of mineralized carbon nanotubes. Compos. Res. 31(5), 282–287 (2018)

    Google Scholar 

  25. 25.

    C. Park, J. Jung, G.J. Yun, Thermomechanical properties of mineralized nitrogen-doped carbon nanotube/polymer nanocomposites by molecular dynamics simulations. Compos. B Eng. 161, 639–650 (2019)

    Article  Google Scholar 

  26. 26.

    C. Park, G. Kim, J. Jung, B. Krishnakumar, S. Rana, G.J. Yun, Enhanced self-healing performance of graphene oxide/vitrimer nanocomposites: a molecular dynamics simulations study. Polymer 206, 122862 (2020)

    Article  Google Scholar 

  27. 27.

    C. Park, G.J. Yun, Characterization of interfacial properties of graphene-reinforced polymer nanocomposites by molecular dynamics-shear deformation model. J. Appl. Mech. 85(9), 091007 (2018)

    Article  Google Scholar 

  28. 28.

    J.H. Park, S.C. Jana, The relationship between nano-and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer 44(7), 2091–2100 (2003)

    Article  Google Scholar 

  29. 29.

    M. Rafiee, J. Rafiee, Z.-Z. Yu, N. Koratkar, Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95(22), 223103 (2009)

    Article  Google Scholar 

  30. 30.

    M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Fracture and fatigue in graphene nanocomposites. Small 6(2), 179–183 (2010)

    Article  Google Scholar 

  31. 31.

    M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)

    Article  Google Scholar 

  32. 32.

    R. Rahman, A. Haque, Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos. B Eng. 54, 353–364 (2013)

    Article  Google Scholar 

  33. 33.

    T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–331 (2008)

    Article  Google Scholar 

  34. 34.

    T. Ramanathan, S. Stankovich, D. Dikin, H. Liu, H. Shen, S. Nguyen, L. Brinson, Graphitic nanofillers in PMMA nanocomposites—an investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci. Part B Polym. Phys. 45(15), 2097–2112 (2007)

    Article  Google Scholar 

  35. 35.

    M.M. Shahzamanian, T. Tadepalli, A.M. Rajendran, W.D. Hodo, R. Mohan, R. Valisetty, P.W. Chung, J.J. Ramsey, Representative volume element based modeling of cementitious materials. J. Eng. Mater. Technol. (2013). https://doi.org/10.1115/1.4025916

    Article  Google Scholar 

  36. 36.

    S. Shang, G.J. Yun, Stochastic finite element with material uncertainties: implementation in a general purpose simulation program. Finite Elem. Anal. Des. 64, 65–78 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    S.-C. Shiu, J.-L. Tsai, Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos. B Eng. 56, 691–697 (2014)

    Article  Google Scholar 

  38. 38.

    J.-L. Tsai, J.-F. Tu, Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater. Des. 31(1), 194–199 (2010)

    Article  Google Scholar 

  39. 39.

    A. Weerasinghe, C.-T. Lu, D. Maroudas, A. Ramasubramaniam, Multiscale shear-lag analysis of stiffness enhancement in polymer-graphene nanocomposites. ACS Appl. Mater. Interfaces. 9(27), 23092–23098 (2017)

    Article  Google Scholar 

  40. 40.

    F. Yavari, M.A. Rafiee, J. Rafiee, Z.Z. Yu, N. Koratkar, Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl. Mater. Interfaces. 2(10), 2738–2743 (2010)

    Article  Google Scholar 

  41. 41.

    S. Yu, S. Yang, M. Cho, Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3), 945–952 (2009)

    Article  Google Scholar 

  42. 42.

    G.J. Yun, S. Shang, A new inverse method for the uncertainty quantification of spatially varying random material properties. Int. J. Uncertain. Quantif. (2016). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016018673

    MathSciNet  Article  Google Scholar 

  43. 43.

    W. Zheng, X. Lu, S.C. Wong, Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91(5), 2781–2788 (2004)

    Article  Google Scholar 

  44. 44.

    W. Zheng, S.-C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos. Sci. Technol. 63(2), 225–235 (2003)

    Article  Google Scholar 

  45. 45.

    F. Zhu, C. Park, G. Jin Yun, An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage. Mech. Adv. Mater. Struct. 28(3), 295–307 (2021)

    Article  Google Scholar 

  46. 46.

    F.Y. Zhu, S. Jeong, H.J. Lim, G.J. Yun, Probabilistic multiscale modeling of 3D randomly oriented and aligned wavy CNT nanocomposites and RVE size determination. Compos. Struct. 195, 265–275 (2018)

    Article  Google Scholar 

  47. 47.

    J. Zhu, J. Kim, H. Peng, J.L. Margrave, V.N. Khabashesku, E.V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 3(8), 1107–1113 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Creative-Pioneering Researchers Program through Seoul National University (SNU) and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2020R1A2B5B01001899) and the Institute of Engineering Research at Seoul National University. The authors are grateful for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gun Jin Yun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, Hi., Park, C., Lim, H.J. et al. A Nano-Micro–Macro Multiscale Modeling for Carbon Fiber-Reinforced Graphene/Epoxy Nanocomposites. Multiscale Sci. Eng. (2021). https://doi.org/10.1007/s42493-021-00058-5

Download citation

Keywords

  • Multiscale modeling
  • MD simulation
  • Karhunen-Loève expansion (KLE)
  • Integrated computational materials engineering (ICME)