Skip to main content
Log in

Strain-Gradient Elasticity Theory for the Mechanics of Fiber Composites Subjected to Finite Plane Deformations: Comprehensive Analysis

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

A general model for the mechanics of fiber-reinforced composites is delivered in finite-plane elastostatics. Within the framework of the nonlinear strain-gradient theory, we obtain the Euler equilibrium equations and admissible boundary conditions. In particular, we present a third gradient continuum model and associated formulations. Soft composite materials are also considered by employing the Mooney-Rivlin energy potential. The presented model can be used as an alternative two-dimensional Cosserat theory of nonlinear elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A.J.M. Spencer, Deformations of Fibre-Reinforced Materials (Oxford University Press, Oxford, 1972)

    MATH  Google Scholar 

  2. A.C. Pipkin, Stress analysis for fiber-reinforced materials. Adv. Appl. Mech. 19, 1–51 (1979). https://doi.org/10.1016/S0065-2156(08)70308-9

    Article  MATH  Google Scholar 

  3. J. Monecke, Microstructure dependence of material properties of composites. Phys. Status Soldi (b) 154, 805–813 (1989)

    Article  Google Scholar 

  4. S.W. Hahm, D.Y. Khang, Crystallization and microstructure-dependent elastic moduli of ferroelectric P(VDF-TrFE) thin films. Soft Matter 6, 5802–5806 (2010)

    Article  Google Scholar 

  5. F. Moravec, M. Holecek, Microstructure-dependent nonlinear viscoelasticity due to extracellular flow within cellular structures. Int. J. Solids Struct. 47, 1876–1887 (2010)

    Article  MATH  Google Scholar 

  6. J.F. Mulhern, T.G. Rogers, A.J.M. Spencer, A continuum theory of a plastic-elastic fibre-reinforced material. Int. J. Eng. Sci. 7, 129–152 (1969). https://doi.org/10.1016/0020-7225(69)90053-6

    Article  MATH  Google Scholar 

  7. A.C. Pipkin, T.G. Rogers, Plane deformations of incompressible fiber-reinforced materials. ASME J. Appl. Mech. 38(8), 634–640 (1971). https://doi.org/10.1115/1.3408866

    Article  MATH  Google Scholar 

  8. J.F. Mulhern, T.G. Rogers, & A.J.M. Spencer, A continuum model for fibre-reinforced plastic materials. in Proceedings of the Royal Society of London. A. (1967)

  9. A.J.M. Spencer, K.P. Soldatos, Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non-Linear Mech. 42, 355–368 (2007). https://doi.org/10.1016/j.ijnonlinmec.2007.02.015

    Article  Google Scholar 

  10. D.J. Steigmann, Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Linear Mech. 47, 734–742 (2012). https://doi.org/10.1016/j.ijnonlinmec.2012.04.007

    Article  Google Scholar 

  11. D.J. Steigmann, F. dell’Isola, Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.I. Kim, D.J. Steigmann, Distension-induced gradient capillarity in lipid membranes. Contin. Mech. Thermodyn. 27(4–5), 609–621 (2014)

    MathSciNet  MATH  Google Scholar 

  13. T. Belay, C.I. Kim, P. Schiavone, Analytical solution of lipid membrane morphology subjected to boundary forces on the edges of rectangular membrane. Contin. Mech. Thermodyn. 28(1–2), 305–315 (2015)

    MathSciNet  MATH  Google Scholar 

  14. M. Zeidi, C.I. Kim, Notes on superposed incremental deformations in the mechanics of lipid membranes. Mathematics & Mechanics of Solids. (2017). https://doi.org/10.1177/1081286517734608

  15. H.C. Park, R.S. Lakes, Torsion of a micropolar elastic prism of square cross section. Int. J. Solids Struct. 23, 485–503 (1987)

    Article  MATH  Google Scholar 

  16. G.A. Maugin, A.V. Metrikine (eds.), Mechanics of Generalized Continua: One Hundred Years After the Cosserats (Springer, New York, 2010)

    MATH  Google Scholar 

  17. P. Neff, A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Munch, P. Neff, W. Wagner, Transversely isotropic material: nonlinear Cosserat vs. classical approach. Contin. Mech. Thermodyn. 23, 27–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Neff, Existence of minimizers for a finite-strain micro-morphic elastic solid. Proc. R. Soc. Edinb. Sect. A 136, 997–1012 (2006)

    Article  MATH  Google Scholar 

  20. S.K. Park, X.L. Gao, Variational formulation of a modified couple-stress theory and its application to a simple shear problem. Zeitschrift für angewandte Mathematik und Physik 59, 904–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Fried, M.E. Gurtin, Gradient nanoscale polycrystalline elasticity: intergrain interactions and triple-junction conditions. J. Mech. Phys. Solids 57, 1749–1779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. dell’Isola, A. Della Corte, L. Greco, A. Luongo, Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  23. F. dell’Isola, M. Cuomo, L. Greco, A. Della Corte, Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017). https://doi.org/10.1007/s10665-016-9865-7

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Turco, Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift für angewandte Mathematik und Physik 67(5), 122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Zeidi, C. Kim, Finite plane deformations of elastic solids reinforced with fibers resistant to flexure: complete solution. Arch. Appl. Mech. (2017). https://doi.org/10.1007/s00419-018-1344-3

  26. M. Zeidi, C. Kim, Mechanics of fiber composites with fibers resistant to extension and flexure. Math. Mech. Solids. (2017). https://doi.org/10.7939/R3Z892V17

  27. M. Zeidi, C. Kim, Mechanics of an elastic solid reinforced with bidirectional fiber in finite plane elastostatics: complete analysis. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0623-0

  28. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Pergamon, Oxford, 1986)

    MATH  Google Scholar 

  29. E.H. Dill, Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. S.S. Antman, Nonlinear Problems of Elasticity (Springer, Berlin, 2005)

    MATH  Google Scholar 

  31. F. dell’Isola, I. Giorgio, A. Della Corte, Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2016). https://doi.org/10.1177/1081286515616034

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Makvandi, J. Christian Reiher, A. Bertram, Isogeometric analysis of first and second strain gradient elasticity. Comput. Mech. 61, 351–363 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. R.W. Ogden, Non-Linear Elastic Deformations (Ellis Horwood Ltd., Chichester, 1984)

    MATH  Google Scholar 

  34. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  35. W.T. Koiter, Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad. Wetensc. B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  36. P. Germain, The method of virtual power in continuum mechanics, part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  Google Scholar 

  37. P. Boisse, N. Hamila, A. Madeo, Modelling the development of defects during composite reinforcements and prepreg forming. Phil. Trans. R. Soc. London A. 374(2071), (2016)

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada via Grant #RGPIN 04742 and the University of Alberta through a start-up grant. The author would like to thank Dr. David Steigmann for discussions concerning the underlying theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Il Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.I. Strain-Gradient Elasticity Theory for the Mechanics of Fiber Composites Subjected to Finite Plane Deformations: Comprehensive Analysis. Multiscale Sci. Eng. 1, 150–160 (2019). https://doi.org/10.1007/s42493-019-00015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-019-00015-3

Keywords

Navigation