Skip to main content

Advertisement

Log in

Geometric Effect of Grating-Patterned Electrode for High Conversion Efficiency of Dye-Sensitized Solar Cells

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Photovoltaic devices that convert solar energy into electrical energy are a promising solution to resolve environmental problems the world is facing today. Among the various photovoltaic system, dye-sensitized solar cells (DSSCs) has been regarded as a new generation of the photovoltaic device due to the low cost and simple fabrication process. However, the current design of DSSCs shows insufficient conversion efficiency. To solve this problem, we increase the optical path length by trapping the incident light using a diffraction grating with high reflectance. We numerically investigate the effect of geometric parameters on the reflectance of diffraction gratings in DSSC system. Based on the simulation results, we propose an optimized geometry of diffraction grating that reflects the outgoing light and traps the incident light. The optimized geometry of the diffraction grating increase in the reflectance about 80% when it is compared to that without the diffraction grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, Y. Zhu, Mater. Chem. Phys. 123, 595 (2010)

    Article  Google Scholar 

  2. H.G. Jung, Y.S. Kang, Y.K. Sun, Electrochim. Acta 55, 4637 (2010)

    Article  Google Scholar 

  3. S. Ito, M. Gratzel, Thin Solid Films 516, 4613 (2008)

    Article  Google Scholar 

  4. H.J. Koo, N.G. Park, Inorg. Chim. Acta 361, 667 (2008)

    Article  Google Scholar 

  5. X.G. Zhao, E.M. Jin, H.B. Gu, J. KIEEME 24, 427 (2011)

    Google Scholar 

  6. W. Cho et al., Efficient binary organic thiolate/disulfide redox mediators in dye-sensitized solar cells based on a carbon black counter electrode. J. Mater. Chem. A 1(2), 233–236 (2013)

    Article  MathSciNet  Google Scholar 

  7. D. Song et al., Successful demonstration of an efficient I−/(SeCN) 2 redox mediator for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14(2), 469–472 (2012)

    Article  Google Scholar 

  8. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dyesensitized. Nature 353, 737 (1991)

    Article  Google Scholar 

  9. M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  Google Scholar 

  10. M. Grätzel, Sol–gel processed TiO2 films for photovoltaic applications. J. Sol-Gel. Sci. Technol. 22(1–2), 7–13 (2001)

    Article  Google Scholar 

  11. H.I.T Panasonic. Solar cell achieves world’s highest energy conversion efficiency of 25.6% at research level. Press release (2014)

  12. R. Venkatasubramanian et al., in 18.2%(AM1. 5) Efficient GaAs Solar Cell on Optical-Grade Polycrystalline Ge Substrate. Photovoltaic specialists conference, 1996, conference record of the twenty fifth IEEE. IEEE, 1996

  13. J.H. Wu et al., A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv. Func. Mater. 17(15), 2645–2652 (2007)

    Article  Google Scholar 

  14. L. Li et al., Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte. J. Am. Chem. Soc. 133(22), 8458–8460 (2011)

    Article  Google Scholar 

  15. N.-G. Park et al., Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn–O type shell on SnO2 and TiO2 cores. Langmuir 20(10), 4246–4253 (2004)

    Article  Google Scholar 

  16. Andreas Kay, Michael Grätzel, Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 14(7), 2930–2935 (2002)

    Article  Google Scholar 

  17. E. Palomares et al., Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125(2), 475–482 (2003)

    Article  MathSciNet  Google Scholar 

  18. S. Domínguez et al., Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells. Photonics Nanostr-Fundam App 10(1), 46–53 (2012)

    Article  Google Scholar 

  19. N.C. Lindquist et al., Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 93(12), 123308 (2008)

    Article  Google Scholar 

  20. S.S. Lo et al., Broad-band anti-reflection coupler for a: Si thin-film solar cell. J. Phys. D Appl. Phys. 40(3), 754 (2007)

    Article  Google Scholar 

  21. L. Zhao et al., A highly efficient light-trapping structure for thin-film silicon solar cells. Sol. Energy 84(1), 110–115 (2010)

    Article  Google Scholar 

  22. A. Mellor et al., A numerical study of Bi-periodic binary diffraction gratings for solar cell applications. Sol. Energy Mater. Sol. Cells 95(12), 3527–3535 (2011)

    Article  Google Scholar 

  23. J. Kim et al., Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells. Angew. Chem. Int. Ed. 51(28), 6864–6869 (2012)

    Article  Google Scholar 

  24. J. Na et al., Multi-layering of a nanopatterned TiO2 layer for highly efficient solid-state solar cells. NPG Asia Mater. 7, e217 (2015)

    Article  Google Scholar 

  25. X. Zhang et al., One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes. J. Mater. Chem. C Mater. Opt. Electr. Dev. 3(14), 3336–3341 (2015)

    Article  Google Scholar 

  26. M. Guo et al., A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal. Nanoscale 6(21), 13060–13067 (2014)

    Article  Google Scholar 

  27. A. Mihi et al., Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells. Angew. Chem. Int. Ed. 50(25), 5712–5715 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT (NRF-2016R1D1A1A09916859).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongchoul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.C., Lee, W., Moon, J.H. et al. Geometric Effect of Grating-Patterned Electrode for High Conversion Efficiency of Dye-Sensitized Solar Cells. Multiscale Sci. Eng. 1, 161–166 (2019). https://doi.org/10.1007/s42493-018-00006-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-018-00006-w

Keywords

Navigation