An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems


Embedding p-body interacting models onto the 2-body networks implemented on commercial quantum annealers is a relevant issue. For highly interacting models, requiring a number of ancilla qubits, that can be sizable and make unfeasible (if not impossible) to simulate such systems. In this manuscript, we propose an alternative to minor embedding, developing a new approximate procedure based on genetic algorithms, allowing to decouple the p-body in terms of 2-body interactions. A set of preliminary numerical experiments demonstrates the feasibility of our approach for the ferromagnetic p-spin model and paves the way towards the application of evolutionary strategies to more complex quantum models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Albash T, Lidar DA (2018) ., vol 90.

  2. Bapst V, Semerjian G (2012) . Journal of Statistical Mechanics: Theory and Experiment 2012(06):P06007.

    Article  Google Scholar 

  3. Biamonte JD (2008) . Phys Rev A 77:052331.

    MathSciNet  Article  Google Scholar 

  4. Brell CG, Flammia ST, Bartlett SD, Doherty AC (2011) . New J Phys 13(5):053039.

    Article  Google Scholar 

  5. Choi V (2008) . Quantum Inf Process 7(5):193.

    MathSciNet  Article  Google Scholar 

  6. Choi V (2011) . Quantum Inf Process 10(3):343.

    MathSciNet  Article  Google Scholar 

  7. Cook SA (1971) .. In: Proceedings of the 3rd annual ACM symposium on theory of computing. STOC ’71. ACM, New York, pp 151–158,, (to appear in print)

  8. del Campo A, Kim K (2019) . New J Phys 21(5):050201.

    Article  Google Scholar 

  9. Derrida B (1981) . Phys Rev B 24:2613.

    MathSciNet  Article  Google Scholar 

  10. Farhi E, Goldstone J, Gutmann S, Sipser M (2000) . arXiv:quant-ph/0001106

  11. Goldberg DE, Holland JH (1988) . Mach Learn 3(2):95.

    Article  Google Scholar 

  12. Gross D, Mezard M (1984) . Nucl Phys B 240(4):431.

    Article  Google Scholar 

  13. Grover LK (1996) In Proceedings of the Twenty-eighth annual ACM symposium on theory of computing (ACM, 1996), STOC ’96, pp 212–219.

  14. Hardy Y, Steeb W H (2010) . Int J Modern Phys C 21(11):1359

    Article  Google Scholar 

  15. Harris R, Berkley A J, Johansson J, Bunyk P, Chapple E M, Enderud C, Hilton J P, Karimi K, Ladizinsky E, Ladizinsky N, Oh T, Perminov I, Rich C, Thom M C, Tolkacheva E, Truncik C J S, Uchaikin S, Wang J, Wilson B, Rose G (2011) . Nature 473:194

    Article  Google Scholar 

  16. Hauke P, Katzgraber H G, Lechner W, Nishimori H, Oliver WD (2019) . arXiv:1903.06559

  17. Herrera F, Lozano M, Sánchez AM (2003) . International Journal of Intelligent Systems 18:309

    Article  Google Scholar 

  18. Leib M, Zoller P, Lechner W (2016) . Quantum Sci Technol 1(1):015008.

    Article  Google Scholar 

  19. Lucas A (2014) . Frontiers in Physics 2:5.

    Article  Google Scholar 

  20. Moscato P (1989) Caltech concurrent computation program. C3P Report 826:1989

    Google Scholar 

  21. O’Driscoll L, Nichols R, Knott PA (2019) Quantum Machine Intelligence.

  22. Ohkuwa M, Nishimori H, Lidar DA (2018) . Phys Rev A 98:022314.

    Article  Google Scholar 

  23. Passarelli G, De Filippis G, Cataudella V, Lucignano P (2018) . Phys Rev A 97:022319.

    Article  Google Scholar 

  24. Passarelli G, Cataudella V, Lucignano P (2019) Improving quantum annealing of the ferromagnetic p-spin model through pausing. Phys Rev B 100(2):024302.

    Article  Google Scholar 

  25. Passarelli G, De Filippis G, Cataudella V, Lucignano P. (2019) . arXiv:1901.07787

  26. Rezakhani A T, Kuo W J, Hamma A, Lidar D A, Zanardi P (2009) . Phys Rev Lett 103:080502.

    Article  Google Scholar 

  27. Seki Y, Nishimori H (2012) . Phys Rev E 85:051112.

    Article  Google Scholar 

  28. Seoane B, Nishimori H (2012) . Journal of Physics A: Mathematical and Theoretical 45(43):435301.

    MathSciNet  Article  Google Scholar 

  29. Susa Y, Yamashiro Y, Yamamoto M, Hen I, Lidar DA, Nishimori H (2018) . Phys Rev A 98:042326.

    Article  Google Scholar 

  30. Tanahashi K, Takayanagi S, Motohashi T, Tanaka S (2019) . Journal of the Physical Society of Japan 88(6):061010.

    Article  Google Scholar 

  31. Yao X (1993) . Microprocessing and Microprogramming 38(1):707. Proceedings Euromicro 93 Open System Design: Hardware, Software and Applications

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. Passarelli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors’ contribution

G. A. and A. V. supervised the research activities related to evolutionary computation. P. R. H. and G. P. designed and implemented the genetic algorithm, and performed numerical simulations and data analysis. P. L. and V. C. supervised the project. All authors contributed to the preparation of the present manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acampora, G., Cataudella, V., Hegde, P.R. et al. An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems. Quantum Mach. Intell. 1, 113–122 (2019).

Download citation


  • Adiabatic quantum computation
  • Quantum annealing
  • p-spin model
  • Genetic algorithms
  • Graph embedding