A Critical Review on the Mineralogy and Processing for High-Grade Quartz

Abstract

High-purity quartz (SiO2) is an important material widely used in many industries, including semiconductor technology, telecommunication, and optics. The content and distribution of impurities in quartz significantly affect the processing methods. This paper provides an insightful review on the processing of high-purity quartz, covering the analytical techniques, separation methods, and the critical procedures used to assess the quality of quartz ore. More importantly, the critical review of the thermal phase transition separation method for fine-grained mineral inclusions, micron-grade fluid inclusions, and lattice-bound trace elements is notably opened for the first time. It is proposed that the research field as a monopolized industry would benefit by expounding the critical problems that occur during the preparation of high-purity quartz.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Dal Martello E, Tranell G, Gaal S, Raaness OS, Tang K, Arnberg L (2011) Study of pellets and lumps as raw materials in silicon production from quartz and silicon carbide. Metall Mater Trans B 42(5):939–950 https://doi.org/10.1007/s11663-011-9529-y

    Article  Google Scholar 

  2. 2.

    Li JS, Li XX, Shen Q, Zhang ZZ, Du FH (2010) Further purification of industrial quartz by much milder conditions and a harmless method. Environ Sci Technol 44(19):7673–7677 https://doi.org/10.1021/es101104c

    Article  Google Scholar 

  3. 3.

    Lin M, Pei ZY, Lei SM (2017) Mineralogy and processing of hydrothermal vein quartz from Hengche, Hubei Province (China). Minerals 7(9):161 https://doi.org/10.3390/min7090161

    Article  Google Scholar 

  4. 4.

    Bayaraa B, Greg B, Noriyoshi T (2005) Hydrothermal quartz vein formation, revealed by coupled SEM-CL imaging and fluid inclusion microthermometry: Shuteen complex, south Gobi, Mongolia. Resour Geol 55(1):1–8. https://doi.org/10.1111/j.1751-3928.2005.tb00223.x

    Article  Google Scholar 

  5. 5.

    Howie RA (1996) Silica: physical behavior, geochemistry and materials applications. Mineral Mag 60(399):190–391. https://doi.org/10.1180/minmag.1996.060.399.16

    Article  Google Scholar 

  6. 6.

    Wang L, Li CX, Wang Y, Yin DQ (2011) China technologies present of high-purity quartz processing and the development propositions. J Mineral Petrol 31(4):110–114 https://doi.org/10.3969/j.issn.1001-6872.2011.04.017

    Google Scholar 

  7. 7.

    Vidyadhar A, Hanumantha RK (2007) Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system. J Colloid Interface Sci 306(2):195–204. https://doi.org/10.1016/j.jcis.2006.10.047

    Article  Google Scholar 

  8. 8.

    Lei SM, Lin M, Pei ZY, Wang EW, Zang FF, Xiong K (2016) Occurrence and removal of mineral impurities in quartz. China Mining Mag 25(6):79–83 https://doi.org/10.3969/j.issn.1004-4051.2016.06.018

    Google Scholar 

  9. 9.

    Haus R, Prinz S, Priess C (2012) Assessment of high purity quartz resources. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Heidelberg, pp 29–51. https://doi.org/10.1007/978-3-642-22161-3_2

    Google Scholar 

  10. 10.

    Muller A, Koch-Muller M (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral Mag 73(4):569–583 https://doi.org/10.1180/minmag.2009.073.4.569

    Article  Google Scholar 

  11. 11.

    Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral 90(2–3):310–315. https://doi.org/10.2138/am.2005.1355

    Article  Google Scholar 

  12. 12.

    Schmidt-Mumm A (1991) Low frequency acoustic emission from quartz upon heating from 90 to 610° C. Phys Chem Miner 17(6):545–553. https://doi.org/10.3969/j.issn.1006-5296.2005.01.007

    Article  Google Scholar 

  13. 13.

    Lin M, Pei ZY, Liu YY, Xia ZJ, Xiong K, Lei SM, Wang EW (2017) High-efficiency trace Na extraction from crystal quartz ore used for fused silica — a pretreatment technology. Int J Min, Metall Mater 24(10):1075–1086 https://doi.org/10.1007/s12613-017-1498-y

    Article  Google Scholar 

  14. 14.

    Götze J (2009) Chemistry, textures and physical properties of quartz – geological interpretation and technical application. Mineral Mag 73(4):645–671. https://doi.org/10.1180/minmag.2009.073.4.645

    Article  Google Scholar 

  15. 15.

    Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68(18):3741–3759. https://doi.org/10.1016/j.gca.2004.01.003

    Article  Google Scholar 

  16. 16.

    Götze J, Plötze M, Trautmann T (2005) Structure and luminescence characteristics of quartz from pegmatites. Am Mineral 90(1):13–21. https://doi.org/10.2138/am.2005.1582

    Article  Google Scholar 

  17. 17.

    Lehmann K, Pettke T, Ramseyer K (2011) Significance of trace elements in syntaxial quartz cement, Haushi group sandstones, Sultanate of Oman. Chem Geol 280(1):47–57. https://doi.org/10.1016/j.chemgeo.2010.10.013

    Article  Google Scholar 

  18. 18.

    Knotter DM (2000) Etching mechanism of vitreous silicon dioxide in HF-based solutions. J Am Chem Soc 122(18):4345–4351. https://doi.org/10.1021/ja993803z

    Article  Google Scholar 

  19. 19.

    Su Y, Zhou YH, Huang W, Gu ZA (2004) Study on reaction kinetics between silica glasses and hydrofluoric acid. J Chin Ceram Soc 32(3):287–293 https://doi.org/10.3321/j.issn:0454-5648.2004.03.016

    Google Scholar 

  20. 20.

    Zhou YH (2005) Study on refining quartz powder by leaching in HF acid solution. J Mineral Petrol 25(3):23–26. https://doi.org/10.3969/j.issn.1001-6872.2005.03.005

    Article  Google Scholar 

  21. 21.

    Dasgupta PK (1998) Comment on “hydrofluoric acid in the Southern California atmosphere”. Environ Sci Technol 32(3):427 https://doi.org/10.1021/es9704592

    Article  Google Scholar 

  22. 22.

    An J, Lee HA, Lee J, Yoon HO (2015) Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea. Chemosphere 119:577–582. https://doi.org/10.1016/j.chemosphere.2014.07.043

    Article  Google Scholar 

  23. 23.

    Loritsch KB, James RD (1991) Purified quartz and process for purifying quartz. US Patent US4983370A

  24. 24.

    Yan Y, Lu YF, Zheng CH, Zhu WC (2009) A new technology for Fe-and Ti-temoval from quartz sand. Multipurpose Utilization Min Res 1:16–19 https://doi.org/10.3969/j.issn.1000-6532.2009.01.005

    Google Scholar 

  25. 25.

    Tlili A, Smith DC, Beny JM, Boyer H (1989) A raman microprobe study of natural micas. Mineral Mag 53:165–179. https://doi.org/10.1180/minmag.1989.053.370.04

    Article  Google Scholar 

  26. 26.

    Bruhn F, Bruckschen P, Meijer J, Stephan A, Richter DK, Veizer J (1996) Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE: implications for diagenetic and provenance studies in sandstone. Can Mineral 34:1223–1232

    Google Scholar 

  27. 27.

    Götze J, Plötze M (1997) Investigation of trace-element distribution in detrital quartz by electron paramagnetic resonance (EPR). Eur J Mineral 9(3):529–537. https://doi.org/10.1127/ejm/9/3/0529

    Article  Google Scholar 

  28. 28.

    Flem B, Larsen RB, Grimstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182(2):237–247. https://doi.org/10.1016/S0009-2541(01)00292-3

    Article  Google Scholar 

  29. 29.

    Xiong K, Lei SM, Zhong LL, Pei ZY, Yang YY, Zang FF (2016) Thermodynamic mechanismand purification of hot press leaching with vein quartz. China Mining Mag 25(2):129–133. https://doi.org/10.3969/j.issn.1004-4051.2016.02.025

    Article  Google Scholar 

  30. 30.

    Kubota H, Inoue S (1959) Diffraction images in the polarizing microscope. J Opt Soc Am 49(2):191–198. https://doi.org/10.1142/9789812790866_0017

    Article  Google Scholar 

  31. 31.

    Kronz A, Simon K, Wiedenbeck M, van den Kerkhof AM, Müller A (2003) Trace elements in quartz – a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15(4):747–763. https://doi.org/10.1127/0935-1221/2003/0015-0747

    Article  Google Scholar 

  32. 32.

    Nasdala L, Kronz A, Grambole D, Trullenque G (2007) Effects of irradiation damage on the backscattering of electrons: silicon-implanted silicon. Am Mineral 92(10):1768–1771 https://doi.org/10.2138/am.2007.2648

    Article  Google Scholar 

  33. 33.

    Kronz A, van den Kerkhof AM, Müller A (2012) Analysis of low element concentrations in quartz by Electron microprobe. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Heidelberg, pp 191–217. https://doi.org/10.1007/978-3-642-22161-3_9

    Google Scholar 

  34. 34.

    Heinrich CA, Cousens DR (1989) Semi-quantitative electron microprobe analysis of fluid inclusion salts from the Mount Isa copper deposit (Queensland, Australia). Geochim Cosmochim Acta 53(1):21–28. https://doi.org/10.1016/0016-7037(89)90269-X

    Article  Google Scholar 

  35. 35.

    González J, Liu C, Mao X, Russo RE (2004) UV-femtosecond laser ablation-ICP-MS for analysis of alloy samples. J Anal At Spectrom 19(9):1165–1168. https://doi.org/10.1039/B403205E

    Article  Google Scholar 

  36. 36.

    Beurlen H, Muller A, Silva D, Silva MRRD (2011) Petrogenetic significance of trace-element data analysed with LA-ICP-MS in quartz from the Borborema pegmatite province, northeastern Brazil. Mineral Mag 75(5):2703–2719. https://doi.org/10.1180/minmag.2011.075.5.2703

    Article  Google Scholar 

  37. 37.

    Touret JLR (1985) Fluid inclusions, reviews in mineralogy. Geochim Cosmochim Acta 49(6):1491. https://doi.org/10.1016/0016-7037(85)90299-6

    Article  Google Scholar 

  38. 38.

    Pasteris JD, Wopenka B, Seitz JC (1988) Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochim Cosmochim Acta 52(5):979–988. https://doi.org/10.1016/0016-7037(88)90253-0

    Article  Google Scholar 

  39. 39.

    Seitz JC, Pasteris JD, Morgan GB (1993) Quantitative analysis of mixed volatile fluids by raman microprobe spectroscopy: a cautionary note on spectral resolution and peak shape. Appl Spectrosc 47(6):816–820. https://doi.org/10.1366/0003702934067045

    Article  Google Scholar 

  40. 40.

    Burlinson K (2007) Acoustic decrepitation as a means of rapidly determining CO2 (and other gas) contents in fluid inclusions and its use in exploration, with examples from gold mines in the Shandong and Hebei provinces, China. Acta Petrol Sin 23(1):65–71 https://doi.org/10.3321/j.issn:1000-0569.2007.01.008

    Google Scholar 

  41. 41.

    Doppler G, Bakker RJ (2014) The influence of the α–β phase transition of quartz on fluid inclusions during re-equilibration experiments. Lithos 198-199:14–23. https://doi.org/10.1016/j.lithos.2014.03.018

    Article  Google Scholar 

  42. 42.

    Santos MFM, Fujiwara E, Schenkel EA, Enzweiler J, Suzuki CK (2015) Processing of quartz lumps rejected by silicon industry to obtain a raw material for silica glass. Int J Miner Process 135:65–70. https://doi.org/10.1016/j.minpro.2015.02.002

    Article  Google Scholar 

  43. 43.

    Piperov N, Ivanova L, Aleksandrova A (2016) A reappraisal of decrepitation-inductively coupled plasma spectroscopy (D-ICP) for the bulk analysis of fluid inclusions in minerals. Anal Methods 8(15):3183–3195 https://doi.org/10.1039/C5AY01936B

    Article  Google Scholar 

  44. 44.

    Zhu HP, Wang LJ, Liu JM (2003) Determination of quadrupole mass spectrometer for gaseous composition of fluid inclusion from different mineralization stages. Acta Petrol Sin 19(2):314–318. https://doi.org/10.3969/j.issn.1000-0569.2003.02.013

    Article  Google Scholar 

  45. 45.

    Müller A, Wanvik JE, Ihlen PM (2012) Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Berlin, pp 71–118. https://doi.org/10.1007/978-3-642-22161-3_4

    Google Scholar 

  46. 46.

    Simpson DR (1977) Aluminum phosphate variants of feldspar. Am Mineral 62(3–4):351–355

    Google Scholar 

  47. 47.

    Maschmeyer D, Lehmann G (1983) A trapped-hole center causing rose coloration of natural quartz. Zeitschrift für Kristallographie - Crystalline Materials 163(1–4):181–196 https://doi.org/10.1524/zkri.1983.163.3-4.181

    Google Scholar 

  48. 48.

    Dennen WH (1966) Stoichiometric substitution in natural quartz. Geochim Cosmochim Acta 30(12):1235–1241. https://doi.org/10.1016/0016-7037(66)90122-0

    Article  Google Scholar 

  49. 49.

    Rinneberg H, Weil JA (1972) EPR studies of Ti3+-H+ centers in X-irradiated α-quartz. J Chem Phys 56(5):2019–2028 https://doi.org/10.1063/1.1677493

    Article  Google Scholar 

  50. 50.

    Stegger P, Lehmann G (1989) Dynamic effects in a new substitutional center of trivalent iron in quartz. Phys Status Solidi B 151(2):463–467 https://doi.org/10.1002/pssb.2221510206

    Article  Google Scholar 

  51. 51.

    Botis SM, Pan Y (2009) Theoretical calculations of [AlO4/M+]0 defects in quartz and crystal-chemical controls on the uptake of Al. Mineral Mag 73(4):537–550 https://doi.org/10.1180/minmag.2009.073.4.537

    Article  Google Scholar 

  52. 52.

    Götze J (2012) Classification, mineralogy and industrial potential of SiO2 minerals and rocks. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Berlin, pp 1–27. https://doi.org/10.1007/978-3-642-22161-3_1

    Google Scholar 

  53. 53.

    Götze J, Pan Y, Muller A, Kotova E, Cerin D (2017) Trace element compositions and defect structures of high-purity quartz from the southern Ural region, Russia. Minerals 7(10):19 https://doi.org/10.3390/min7100189

    Article  Google Scholar 

  54. 54.

    Rusk B (2012) Cathodoluminescent textures and trace elements in hydrothermal quartz. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Heidelberg, pp 307–329. https://doi.org/10.1007/978-3-642-22161-3_14

    Google Scholar 

  55. 55.

    Götte T, Ramseyer K (2012) Trace element characteristics, luminescence properties and real structure of quartz. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Berlin, pp 265–285. https://doi.org/10.1007/978-3-642-22161-3_12

    Google Scholar 

  56. 56.

    Demars C, Pagel M, Deloule E, Blanc P (1996) Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of trace element distributions and fluid inclusion P-T-X properties in authigenic quartz. Am Mineral 81(7–8):891–901 https://doi.org/10.2138/am-1996-7-812

    Article  Google Scholar 

  57. 57.

    Götte T, Pettke T, Ramseyer K, Koch-Muller M, Mullis J (2011) Cathodoluminescence properties and trace element signature of hydrothermal quartz: a fingerprint of growth dynamics. Am Mineral 96(5–6):802–813. https://doi.org/10.2138/am.2011.3639

    Article  Google Scholar 

  58. 58.

    Glinka YD, Lin SH, Chen YT (1999) The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles. Appl Phys Lett 75(6):778–780. https://doi.org/10.1063/1.124510

    Article  Google Scholar 

  59. 59.

    Glinka YD, Lin SH, Hwang LP, Chen YT (2000) Photoluminescence from mesoporous silica: similarity of properties to porous silicon. Appl Phys Lett 77(24):3968–3970. https://doi.org/10.1063/1.1328364

    Article  Google Scholar 

  60. 60.

    Götte T, Richter DK (2003) Late palaeozoic and early mesozoic hydrothermal events inthe northern Rhenish massif results from fluid inclusion analyses and cathodoluminescence investigations. J Geochem Explor 78-79:531–535. https://doi.org/10.1016/S0375-6742(03)00066-9

    Article  Google Scholar 

  61. 61.

    Kalceff MAS, Phillips MR (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B 52(5):3122–3134 https://doi.org/10.1103/PhysRevB.52.3122

    Article  Google Scholar 

  62. 62.

    Kempe U, Götze J, Dandar S, Habermann D (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): indications from a combined CL-SEM study. Mineral Mag 63:165–177. https://doi.org/10.1180/002646199548402

    Article  Google Scholar 

  63. 63.

    Müller A, Wiedenbeck M, Flem B, Schiellerup H (2008) Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostand Geoanal Res 32(3):361–376. https://doi.org/10.1111/j.1751-908X.2008.00901.x

    Article  Google Scholar 

  64. 64.

    Hwang JY, Feldman FJ (1970) Determination of atmospheric trace elements by atomic absorption spectroscopy. Appl Spectrosc 24(3):371–374 https://doi.org/10.1366/000370270774371633

    Article  Google Scholar 

  65. 65.

    Morteani G, Eichinger F, Götze J, Tarantola A, Müller A (2012) Evaluation of the potential of the pegmatitic quartz veins of the sierra de Comechigones (Argentina) as a source of high purity quartz by a combination of LA-ICP-MS, ICP, cathodoluminescence, gas chromatography, fluid inclusion analysis, Raman and FTIR spectroscopy. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Berlin, pp 119–137. https://doi.org/10.1007/978-3-642-22161-3_5

    Google Scholar 

  66. 66.

    Monecke T, Bombach G, Klemm W, Kempe U, Götze J, Wolf D (2000) Determination of trace elements in the quartz reference material UNS-SpS and in natural quartz samples by ICP-MS. Geostand Newslett 24(1):73–81 https://doi.org/10.1111/j.1751-908X.2000.tb00588.x

    Article  Google Scholar 

  67. 67.

    Lin M, Pei ZY, Li YB, Liu YY, Wei ZL, Lei SM (2018) Separation mechanism of lattice-bound trace elements from quartz by KCl-doping calcination and pressure leaching. Miner Eng 125:42–49. https://doi.org/10.1016/j.mineng.2018.05.029

    Article  Google Scholar 

  68. 68.

    Thomas SM, Koch-Müller M, Reichart P, Rhede D, Thomas R, Wirth R, Matsyuk S (2009) IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Phys Chem Miner 36(9):489–509 https://doi.org/10.1007/s00269-009-0295-1

    Article  Google Scholar 

  69. 69.

    El-Salmawy MS, Nakahiro Y, Wakamatsu T (1993) The role of alkaline earth cations in flotation separation of quartz from feldspar. Miner Eng 6(12):1231–1243. https://doi.org/10.1016/0892-6875(93)90101-R

    Article  Google Scholar 

  70. 70.

    Vieira AM, Peres AEC (2007) The effect of amine type, pH, and size range in the flotation of quartz. Miner Eng 20(10):1008–1013. https://doi.org/10.1016/j.mineng.2007.03.013

    Article  Google Scholar 

  71. 71.

    Xu LH, Wu HQ, Dong FQ, Wang L, Wang Z, Xiao JH (2013) Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Miner Eng 41:41–45. https://doi.org/10.1016/j.mineng.2012.10.015

    Article  Google Scholar 

  72. 72.

    Wang L, Sun W, Hu YH, Xu LH (2014) Adsorption mechanism of mixed anionic/cationic collectors in muscovite – quartz flotation system. Miner Eng 64:44–50. https://doi.org/10.1016/j.mineng.2014.03.021

    Article  Google Scholar 

  73. 73.

    Lin M, Lei SM, Pei ZY, Liu YY, Xia ZJ, Xie FX (2018) Application of hydrometallurgy techniques in quartz processing and purification: a review. Metallurgical Res Technol 115:303 https://doi.org/10.1051/metal/2017105

    Article  Google Scholar 

  74. 74.

    Lin M, Liu YY, Lei SM, Ye Z, Pei ZY, Li B (2018) High-efficiency extraction of Al from coal-series kaolinite and its kinetics by calcination and pressure acid leaching. Appl Clay Sci 161:215–224. https://doi.org/10.1016/j.clay.2018.04.031

    Article  Google Scholar 

  75. 75.

    Pei ZY, Lin M, Liu YY, Lei SM (2018) Dissolution behaviors of trace muscovite during pressure leaching of hydrothermal vein quartz using H2SO4 and NH4Cl as leaching agents. Minerals 8(2):282 https://doi.org/10.3390/min8020060

    Google Scholar 

  76. 76.

    Uwadiale GGOO (1992) Flotation of iron oxides and quartz—a review. Miner Process Extr Metall Rev 11(3):129–161. https://doi.org/10.1080/08827509208914209

    Article  Google Scholar 

  77. 77.

    Lei SM, Pei ZY, Zhong LL, Ma QL, Huang DD, Yang YY (2014) Study on the technology and mechanism of reverse flotation and hot pressing leaching with vein quartz. Non-Metallic Mines 37(2):40–43 https://doi.org/10.3969/j.issn.1000-8098.2014.02.013

    Google Scholar 

  78. 78.

    Lin M, Pei ZY, Lei SM, Liu YY, Xia ZJ, Xie FX (2017) Trace muscovite dissolution separation from vein quartz by elevated temperature and pressure acid leaching using sulphuric acid and ammonia chloride solutions. Physicochem Prob Min Process 54(2):448–458. https://doi.org/10.5277/ppmp1839

    Article  Google Scholar 

  79. 79.

    Zhong LL (2015) Study on purifying preparation and mechanism of ultra-pure quartz. Dissertation, Wuhan University of Technology

  80. 80.

    Tuncuk A, Akcil A (2013) Effects of lixiviant (H2SO4 and C6H8O7) and reductant (H2O2) with an application of acid leaching in production of high quality quartz. Madencilik 52(2–3):9–20

    Google Scholar 

  81. 81.

    Zhang LY, Lin XL (2005) Research on preparation of high-purified quardz micropowder & quardz glass sand from quartz rock. Non-metallic Mines 28(6):37–39. https://doi.org/10.3969/j.issn.1000-8098.2005.06.014

    Article  Google Scholar 

  82. 82.

    Bao SX, Yuan JZ (2005) The application of microwave in the production of high-purified quartz. Geol Chem Min 27(1):38–42. https://doi.org/10.3969/j.issn.1006-5296.2005.01.007

    Article  Google Scholar 

  83. 83.

    Xie KQ, Tang JW, Ma WH, Ning Z, Mai Y (2013) Effect of additives on purification of metallurgical grade silicon by oxygen pressure leaching. J Kunming Univ Sci Technol (Nat Sci Edition) 38(1):1–5. https://doi.org/10.3969/j.issn.1007-855x.2013.01.001

    Article  Google Scholar 

  84. 84.

    Xiong K, Zy P, Zang FF, Lin M (2016) Process and mechanism of high-purity quartz prepared by mixed acid leaching. Non-Metallic Mines 39(3):60–62. https://doi.org/10.3969/j.issn.1000-8098.2016.03.019

    Article  Google Scholar 

  85. 85.

    Wright PM, Weil JA, Buch T, Anderson JH (1963) Titanium colour centres in rose quartz. Nature 197(4864):246–248 https://doi.org/10.1038/197246a0

    Article  Google Scholar 

  86. 86.

    Zhu PN (1980) Relationship between phase transformation of silica and microstructure. J Chin Ceram Soc 8(3):81–87. https://doi.org/10.14062/j.issn.0454-5648.1980.03.009

    Article  Google Scholar 

  87. 87.

    Varadachari C (1992) An investigation on the reaction of phosphoric acid with mica at elevated temperatures. Ind Eng Chem Res 31(1):357–364. https://doi.org/10.1021/ie00001a048

    Article  Google Scholar 

  88. 88.

    Mifsud C, Fujioka T, Fink D (2013) Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating. Nucl Inst Methods Phys Res B 294:203–207. https://doi.org/10.1016/j.nimb.2012.08.037

    Article  Google Scholar 

  89. 89.

    Zhang ZZ, Li JS, Li XX, Huang HQ, Zhou LF, Xiong TT (2012) High efficiency iron removal from quartz sand using phosphoric acid. Int J Miner Process 114-117:30–34. https://doi.org/10.1016/j.minpro.2012.09.001

    Article  Google Scholar 

  90. 90.

    Liu YF, Huang ZL, Nie Y, Sun JJ (2016) The research of preparation of ultra pure quartz sand. Non-Metallic Mines 39(1):84–86 https://doi.org/10.3969/j.issn.1000-8098.2016.01.026

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (51974215, 51774223, 51604205).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yubiao Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Liu, Z., Wei, Y. et al. A Critical Review on the Mineralogy and Processing for High-Grade Quartz. Mining, Metallurgy & Exploration (2020). https://doi.org/10.1007/s42461-020-00247-0

Download citation

Keywords

  • High-purity quartz
  • Analysis technique
  • Fluid impurity
  • Lattice impurity