Investigation of Thermoelastic Wave Propagation in Euler–Bernoulli Beam via Nonlocal Strain Gradient Elasticity and G-N Theory

Abstract

The size-dependent effect arising in micro/nano-structures has attracted considerable attention in academic and industrial communities. The theories developed to characterize such effect mainly include the nonlocal elasticity theory, the strain gradient theory, the modified coupled stress theory and the more recent nonlocal strain gradient elasticity etc. Meanwhile, the thermal-induced deformation or stress in micro/nano-structures is increasingly becoming a vital issue in their designs and applications. Nevertheless, theoretical investigations to predict the thermoelastic performances of micro/nano-structures are not so common, especially in the case of nonlocal strain gradient elasticity incorporating thermoelastic coupling effect. In present work, investigation of thermoelastic wave propagation in micro-beam is conducted in the context of the nonlocal strain gradient elasticity and the G-N theory, taking the thermoelastic coupling effect into account. The governing equations are formulated based on the Euler–Bernoulli beam model and the G-N theory. By assuming the wave-type solutions, the equations are solved and the dispersion relation between frequency and wave number and the relation between phase velocity and wave number are determined respectively. In calculation, the above two relations are fully investigated and comparisons on them under different theories are provided accordingly. Some new findings are presented and discussed in detail. It is hoped that the present work may provide some guidelines in designing and optimizing micro-structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Sun Y, Fang D, Soh AK (2006) Thermoelastic damping in micro-beam resonators. Int J Solid Struct 43(10):3213–3229. https://doi.org/10.1016/j.ijsolstr.2005.08.011

    Article  MATH  Google Scholar 

  2. 2.

    Salekdeh AY, Koochi A, Beni YT, Abadyan M (2012) Modeling effects of three nano-scale physical phenomena on instability voltage of multi-layer MEMS/NEMS: material size dependency, van der waals force and non-classic support conditions. Trends Appl Sci Res 7:1–17. https://doi.org/10.3923/tasr.2012.1.17

    Article  Google Scholar 

  3. 3.

    Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:296–358

    MATH  Google Scholar 

  4. 4.

    Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  5. 5.

    Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16. https://doi.org/10.1016/0020-7225(72)90070-5

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710. https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  7. 7.

    Lu P, Lee HP, Lu C, Zhang PQ (2007) Application of nonlocal beam models for carbon nanotubes. Int J Solid Struct 44:5289–5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034

    Article  MATH  Google Scholar 

  8. 8.

    Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307. https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  9. 9.

    Lim CW, Yang Y (2010) New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. J Comput Theor Nanosci 7:988–995. https://doi.org/10.1166/jctn.2010.1443

    Article  Google Scholar 

  10. 10.

    Lim CW, Yang Y (2010) Wave propagation in carbon nanotubes: nonlocal elasticity-induced stiffness and velocity enhancement effects. J Mech Mater Struct 5:459–476. https://doi.org/10.2140/jomms.2010.5.459

    Article  Google Scholar 

  11. 11.

    Ji C, Yao L, Li C (2020) Transverse vibration and wave propagation of functionally graded nanobeams with axial motion. J Vib Eng Technol 8:257–266. https://doi.org/10.1007/s42417-019-00130-3

    Article  Google Scholar 

  12. 12.

    Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech An 11:415–448. https://doi.org/10.1007/BF00253946

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech An 11:385–414. https://doi.org/10.1007/BF00253945

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Koiter WT (1964) Couple stresses in the theory of elasticity, I. II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (B) 67:17–44

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solid Struct 4:109–124. https://doi.org/10.1016/0020-7683(68)90036-X

    Article  MATH  Google Scholar 

  16. 16.

    Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41:1825–1857. https://doi.org/10.1016/0022-5096(93)90072-N

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Kong S, Zhou S, Nie Z, Kai W (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47:487–498. https://doi.org/10.1016/j.ijengsci.2008.08.008

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Zhang B, He Y, Liu D, Gan Z, Lei S (2014) Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem Anal Des 79:22–39. https://doi.org/10.1016/j.finel.2013.10.004

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mohammadimehr M, Farahi MJ, Alimirzaei S (2016) Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory. Appl Math Mech 10:1375–1392. https://doi.org/10.1007/s10483-016-2138-9

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Kumar R, Devi S (2016) Plane waves and fundamental solution in a modified couple stress generalized thermoelastic with three-phase-lag model. Multidiscip Model Mater Struct 12:693–711. https://doi.org/10.1108/MMMS-04-2016-0018

    Article  Google Scholar 

  21. 21.

    Daneshmehr AR, Mohammad-Abadi M (2015) Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories. Int J Eng Sci 87:83–102. https://doi.org/10.1016/j.ijengsci.2014.11.003

    Article  Google Scholar 

  22. 22.

    Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313. https://doi.org/10.1016/j.jmps.2015.02.001

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Li L, Hu Y, Li X (2016) Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int J Mech Sci 115:135–144. https://doi.org/10.1016/j.ijmecsci.2016.06.011

    Article  Google Scholar 

  24. 24.

    Yang Y, Lin Q, Guo R (2020) Axisymmetric wave propagation behavior in fluid-conveying carbon nanotubes based on nonlocal fluid dynamics and nonlocal strain gradient theory. J Vib Eng Technol 8:773–780. https://doi.org/10.1007/s42417-019-00194-1

    Article  Google Scholar 

  25. 25.

    Li L, Hu Y, Ling L (2015) Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092. https://doi.org/10.1016/j.compstruct.2015.08.014

    Article  Google Scholar 

  26. 26.

    Zhen YX, Wen SL, Tang Y (2019) Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model. Physica E 105:116–124. https://doi.org/10.1016/j.physe.2018.09.005

    Article  Google Scholar 

  27. 27.

    Ebrahimi F, Barati MR (2016) Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl Phys A 122:843. https://doi.org/10.1007/s00339-016-0368-1

    Article  Google Scholar 

  28. 28.

    Ebrahimi F, Barati MR (2016) Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation. J Vib Control 24:1–16. https://doi.org/10.1177/1077546316678511

    MathSciNet  Article  Google Scholar 

  29. 29.

    Barati MR, Zenkour AM (2017) A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate. Compos Struct 168:885–892. https://doi.org/10.1016/j.compstruct.2017.02.090

    Article  Google Scholar 

  30. 30.

    Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27:240–253. https://doi.org/10.1063/1.1722351

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Peshkor V (1944) Second sound in Helium II. J Phys 8:381–382

    Google Scholar 

  32. 32.

    Lord HW, Shulman YA (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309. https://doi.org/10.1016/0022-5096(67)90024-5

    Article  MATH  Google Scholar 

  33. 33.

    Green AE, Lindsay KA (1972) Thermoelasticity J Elasticity 2:1–7

    Article  Google Scholar 

  34. 34.

    Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stresses 15:253–264. https://doi.org/10.1080/01495739208946136

    MathSciNet  Article  Google Scholar 

  35. 35.

    Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elasticity 31:189–208. https://doi.org/10.1007/BF00044969

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Zenkour AM, Abouelregal AE, Alnefaie KA, Abuhamdeh N, Aljinaidi AA, Aifantis EC (2015) State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation. J Mech Sci Technol 29:2921–2931. https://doi.org/10.1007/s12206-015-0623-y

    Article  Google Scholar 

  37. 37.

    Hosseini SM (2017) Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green-Naghdi theory. Appl Math Model 57:21–36. https://doi.org/10.1016/j.apm.2017.12.034

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Yu YJ, Tian XG, Xiong QL (2016) Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur J Mech A-Solids 60:238–253. https://doi.org/10.1016/j.euromechsol.2016.08.004

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Hetnarski RB, Eslami MR (2009) Thermal stresses-advanced theory and applications. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11972176).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tianhu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, B., He, T. Investigation of Thermoelastic Wave Propagation in Euler–Bernoulli Beam via Nonlocal Strain Gradient Elasticity and G-N Theory. J. Vib. Eng. Technol. (2021). https://doi.org/10.1007/s42417-020-00277-4

Download citation

Keywords

  • Size-dependent effect
  • Nonlocal strain gradient elasticity
  • Thermal-induced deformation
  • Thermoelastic coupling effect
  • Euler–Bernoulli beam
  • Thermoelastic wave propagation