Study of Thermoelastic Damping in Microstretch Thermoelastic Thin Circular Plate



The purpose of this paper is to study detection, microstretch function, temperature distribution function and thermoelastic damping analysis due to thermal variations and stretch forces in homogeneous, isotropic microstretch, generalized thermoelastic thin circular plate.


This theory is based on the Kirchho-Love plate theory assumptions. The governing equations for the transverse vibrations of microstretch thermoelastic thin circular plate have been derived. The analytical expressions for detection, microstretch function, temperature distribution function and thermoelastic damping have been numerically analyzed for clamped and simply supported boundary conditions in case of both non-Fourier and Fourier microstretch thermoelastic circular plate with the help of MATLAB programming software.


Finally the analytical development for thermoelastic damping have been illustrated numerically for Silicon-like material. The computer simulated results have been presented graphically under different boundary conditions.


It leads to the conclusion that thermal relaxation time and microstretch parameters contribute to an increase in the magnitude of the critical value of damping.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Berry BS (1955) Precise investigation of the theory of damping by transverse thermal currents. J Appl Phys 26:1221–1224

    Article  Google Scholar 

  2. 2.

    Biswas D, Ray MC (2013) Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1–3 piezoelectric composite. Int J Mech Mater Des 9:83–104

    Article  Google Scholar 

  3. 3.

    Chandrashekhara K (2001) Theory Pates. Universities Press, India, Orient Blackswan

    Google Scholar 

  4. 4.

    Dhaliwal RS, Singh A (1980) Dynamic coupled thermoelasticity. Hindustan Publication Corporation, New Delhi, India

    Google Scholar 

  5. 5.

    Eringen AC (1966) Linear theory of micropolar elasticity. J Math Mech 909–923

  6. 6.

    Eringen AC (1971) Micropolar elastic solids with stretch. Ari Kitabevi Matbassi 24:1–18

    Google Scholar 

  7. 7.

    Eringen AC (1990) Theory of thermo- microstretch elastic solids. Int J Eng Sci 28:1291–1301

    Article  Google Scholar 

  8. 8.

    Eringen AC (1999) Microcontinuum field theories I: Foundation and Solids. Springer, New York

    Google Scholar 

  9. 9.

    Grover D (2013) Transverse vibrations in micro-scale viscothermoelastic beam resonators. Arch Appl Mech 83(2):303–314

    Article  Google Scholar 

  10. 10.

    Grover D (2015) Damping in thin circular viscothermoelastic plate resonators. Can J Phys 93(12):1597–1605

    Article  Google Scholar 

  11. 11.

    Grover D, Seth RK (2017) Viscothermoelastic micro-scale beam resonators based on dual-phase lagging model. Microsyst Technol.

  12. 12.

    Grover D, Seth RK (2018) Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators. Mech Time Depend Mater 23(1).

  13. 13.

    Kumar RS, Ray MC (2012) Active constrained layer damping of smart laminated composite sandwich plates using 1–3 piezoelectric composites. Int J Mech Mater Des 8:197–218

    Article  Google Scholar 

  14. 14.

    Leissa AW (1969) Vibration of Plates. Scientific and Technical Information Division (National Aeronautics and Space Administration), Washington

  15. 15.

    Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro and nanomechanical systems. Phys. Rev. B 61:5600–5609

    Article  Google Scholar 

  16. 16.

    Lord HW, Shulman Y (1967) The generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  Google Scholar 

  17. 17.

    Nayfeh AH, Younis MI (2004) Modeling and simulations of thermoelastic damping in microplates. J Micromech Microeng 14:1711–1717

    Article  Google Scholar 

  18. 18.

    Alghamdi NA (2019) Vibration of circular micro-ceramic (Si 3 N4) plate resonators in the context of the generalized viscothermoelastic dual-phase-lagging theory. Adv Mech Eng 11(11):1.

    Article  Google Scholar 

  19. 19.

    Partap G, Chugh N (2017a) Deflection analysis of micro-scale microstretch thermoelastic beam resonators under harmonic loading. Appl Math Model 46:16–27

    MathSciNet  Article  Google Scholar 

  20. 20.

    Partap G, Chugh N (2017b) Thermoelastic damping in microstretch thermoelastic rectangular plate. Microsyst Technol 23:5875–5886

    Article  Google Scholar 

  21. 21.

    Partap G, Chugh N (2017c) Study of deflection and damping in micro-beam resonator based on micro-stretch thermoelastic theory. Mech Adv Mater Struct.

  22. 22.

    Rao SS (2007) Vibration of continuous systems. Wiley, New Jersey, USA

    Google Scholar 

  23. 23.

    Rashidifar MA, Rashidifar AA (2015) Vibrations Analysis of circulare plate with piezoelectric actuator using thin plate theory and bessel function. Am J Eng Technol Soc 2(6):140–156

    Google Scholar 

  24. 24.

    Reddy JN (1999) Theory and analysis of elastic plates. Taylor and Francis, Philadelphia, PA

    Google Scholar 

  25. 25.

    Sharma JN, Grover D (2012) Thermoelastic vibration analysis of Mems/ Nems plate resonators with void. Acta Mech 223:167–187

    MathSciNet  Article  Google Scholar 

  26. 26.

    Sun YX, Tohmyoh H (2009) Thermoelastic damping of the axisymmetric vibration of circular plate resonators. J Sound Vib 319:392–405

    Article  Google Scholar 

  27. 27.

    Sun Y, Saka M (2010) Thermoelastic damping in micro-scale circular plate resonators. J Sound Vib 329:328–337

    Article  Google Scholar 

  28. 28.

    Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. Marcel Dekker Inc., New York

    Google Scholar 

  29. 29.

    Watson GN (1922) A Treatise on the theory of Bessel functions. Cambridge University Press, UK

    Google Scholar 

  30. 30.

    Wong SJ, Fox CHJ, McWilliam S (2006) Thermoelastic damping of the in-plane vibration of thin silicon rings. J Sound Vib 293:266–285

    Article  Google Scholar 

  31. 31.

    Zener C (1937) Internal friction in solids I, Theory of internal friction in reeds. Phys Rev 52:230–235

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nitika Chugh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chugh, N., Partap, G. Study of Thermoelastic Damping in Microstretch Thermoelastic Thin Circular Plate. J. Vib. Eng. Technol. 9, 105–114 (2021).

Download citation


  • Microstretch
  • Circular plate
  • Thermoelastic damping
  • Bessel functions
  • Clamped
  • Simply supported