Interceram - International Ceramic Review

, Volume 67, Supplement 1, pp 58–65 | Cite as

The Interfacial Behavior of Alumina-Magnesia Castables and Molten Slag under an Alternating Magnetic Field

  • Yongshun Zou
  • Ao HuangEmail author
  • Pengfei Lian
  • Huazhi Gu
Research and Development Electromagnetic Metallurgy


Electromagnetic metallurgical technology has become an important method for the smelting of high purity steel with the development of metallurgical technology. The electromagnetic fields existing extensively in the steelmaking process can not only affect the smelting efficiency and the cleanness of steel, but also the interfacial behavior between the refractory and the molten slag. Focusing on alumina-magnesia castables, an important lining material in ladles, the interfacial behavior between the castable and different ladle slags with or without an AMF is studied in this paper. The results showed that the slag corrosion and especially the slag penetration of the alumina-magnesia castable are more severe under an AMF. Moreover, an AMF accelerates the migration of Fe, Mn and their oxides from the molten slag to the castable. Meanwhile, some low melting point phases such as diopside and anorthite form in the corrosion layer of the castable, which was deduced to accelerate the slag corrosion and penetration of the alumina-magnesia castable.


electromagnetic metallurgy alumina-magnesia castable AMF interfacial behavior slag corrosion and penetration 


  1. [1]
    Lehman, A., Sjoden, O., Kuchaev, A.: Electromagnetic equipment for non-contacting treatment of liquid metal in metallurgical processes. Magnetohydrodynamics 42 (2006) 299-306Google Scholar
  2. [2]
    Baake, E., Nacke, B.: Efficient heating by electromagnetic sources in metallurgical processes: Recent applications and development trends. Wydawnictwo SIGMA-NOT 86 (2010) [7] 11–14Google Scholar
  3. [3]
    Zhao, Z., Chai, Y., Zheng, S., et al.: Electromagnetic field assisted metallic materials processing: A review. Steel Res. Int. 88 (2017) [5] 1–11Google Scholar
  4. [4]
    Fujisaki, K., Ueyama, T., Toh, T., et al.: Magnetohydrodynamic calculation for electromagnetic stirring of molten metal. IEEE Trans. Magnet. 34 (1998) [4] 2120–2122CrossRefGoogle Scholar
  5. [5]
    Wang, Y., Zhong, Y., Wang, B., et al.: Numerical and experimental analysis of flow phenomenon in centrifugal flow tundish. ISIJ Inter. 49 (2009) [10] 1542–1550CrossRefGoogle Scholar
  6. [6]
    Chiho, W., Shunhua, X.: Electrical conductivity of molten slags of CaF2+Al2O3 and CaF2+Al2O3+CaO Systems for ESR. ISIJ Inter. 33 (2007) [2] 239–244CrossRefGoogle Scholar
  7. [7]
    Li, X.Q., Du, Z.Y., Liu, P.F., et al.: Thermodynamic analysis of ion activity in welding molten slag for MgO-CaO-SiO2 ternary phase. Chin. J. Nonferr. Met. 15 (2005) [1] 157–161Google Scholar
  8. [8]
    Morishita, M., Koyama, K., Hatamoto, A., et al.: Electronic states of oxygen ions of molten slags used for iron and steel making. ISIJ Inter. 36 (1996) [10] 285–296Google Scholar
  9. [9]
    Xiao-Quan, L.I., Yang, Z.H., Chu, Y.J.: Regulation effect of external electric field inducing oxygen flow on molten slag oxidation in submerged arc welding. J. Aeronautical Mater. 33 (2013) [6] 27–32Google Scholar
  10. [10]
    Li, X., Zhu, B., Wang, T.: Effect of electromagnetic field on slag corrosion resistance of low carbon MgO-C refractories. Ceram. Int. 38 (2012) [3] 2105–2109CrossRefGoogle Scholar
  11. [11]
    Sassa, K., Li, T., Asai, S.: Dynamic meniscus behavior influencing on surface condition of products cast in continuous caster with AMF applied from the outside of a mold. Tetsu-to-Hagane 79 (2009) [9] 1075–1081CrossRefGoogle Scholar
  12. [12]
    Matan-i-, M.: Metal melting in induction furnaces. Nature Biotechnol. 24 (2013) [7] 817–819Google Scholar
  13. [13]
    Tokovoi, O.K.: Electrochemical reduction of steel in an induction furnace. Steel in Transl. 47 (2017) [4] 263–266CrossRefGoogle Scholar
  14. [14]
    Wang, R., Zhang, H.S., Tang, L. et al.: Deep denitrogenization technology of 23Co-Ni steel in vacuum induction melting furnace. Adv. Mater. Res. 1004–1005 (2014) 227–230Google Scholar
  15. [15]
    Behera, S., Sarkar, R.: Nano carbon containing low carbon magnesia carbon refractory: An overview. Protect. of Metals & Phys. Chem. Surfaces 52 (2016) [3] 467–474CrossRefGoogle Scholar
  16. [16]
    Fruhstorfer, J., Dudczig, S., Rudolph, M., et al.: Interface analyses between a case-hardened ingot casting steel and carbon-containing and carbon-free refractories. Metall. & Mater. Trans. B 49 (2018) [3] 1499–1521CrossRefGoogle Scholar
  17. [17]
    Fu, L., Gu, H., Huang, A., et al.: Possible improvements of alumina-magnesia castable by lightweight microporous aggregates. Ceram. Int. 41 (2015) [1] 1263–1270CrossRefGoogle Scholar
  18. [18]
    Zou, Y., Gu, H., Huang, A., et al.: Effects of MgO micropowder on microstructure and resistance coefficient of Al2O3-MgO castable matrix. Ceram. Int. 40 (2014) [5] 7023–7028CrossRefGoogle Scholar
  19. [19]
    Zou, Y., Gu, H., Huang, A.: Slag corrosion mechanism of lightweight Al2O3-MgO castable in different atmospheric conditions. J. Am. Ceram. Soc. 101 (2017) [5] 2096–2106CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Yongshun Zou
    • 1
  • Ao Huang
    • 1
    Email author
  • Pengfei Lian
    • 1
  • Huazhi Gu
    • 1
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations