Skip to main content
Log in

Nanotechnology in Refractory Castables — An Overview

  • Refractories Forum
  • Nanotechnology
  • Published:
Interceram - International Ceramic Review

Abstract

In recent times, nanotechnology has gained significant attention in the field of refractory research. As the unshaped refractory, especially the castable, is becoming of prime importance in refractory research, a good amount of work is going on globally to study the effect of nanotechnology on castables. The Effect of different nano-oxide binders, formed from colloidal bonding agents and nano-additives is also important. Conventional bonding materials, like, high-alumina cement, have drawbacks in the processing steps (mainly drying) and with respect to properties developed. The use of colloidal silica as an alternative binder has improved this condition and is being practiced commercially, but restrictions on high temperature applications have encouraged the use of other colloidal systems, namely alumina, mullite, spinel, sols, etc. Nanoparticles are also present in the castable system from binders like hydratable alumina, additives like microsilica, etc. are also present in the castable system and influence the properties developed. Nano scaled additives are also added to reduce the energy consumption and to improve the densification process at lower temperatures. In this paper, various aspects of the contribution and effect of nanotechnology, on the development of refractory castables are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Perkins, W.W. (Ed): Ceramic Glossary. The American Ceramic Society, Columbus, Ohio, USA (1984) ISBN 13: 9780916094614

    Google Scholar 

  2. Sarkar, R.: Refractory Technology: Fundamentals and Applications, CRC Press, Florida, USA (2016) ISBN 13: 9781498754255

    Google Scholar 

  3. Lee, W.E., Vieira, W., Zhang, S., Ahari, K.G., Sarpoolaky, H., Parr, C.: Castable refractory concrete. Intern. Mat. Rev. 46 (2001) [3] 145-167

    CAS  Google Scholar 

  4. ISO 1927-1:012 Monolithic (unshaped) refractory products, Part 1: Introduction and classification.

  5. Banerjee, S.: Monolithic Refractories, a comprehensive Handbook. World Scientific: The American Ceramic Society, Westerville, USA (1998) ISBN 13: 9789810231200

    Google Scholar 

  6. Ningsheng, Z., Shuhe, H., Sanhua, Z.: Advances in modern refractory castables. China’s Refract. 13 (2004) [2] 3–12

    Google Scholar 

  7. Zhou, N.: New castables and their role in advancements in monolithic refractories, Part 1. Interceram 55 (2006) [1] 24–26

    CAS  Google Scholar 

  8. Krietz, L.: Refractory Castables. In: Refractories Handbook. Ed. C.A. Schacht, Marcel Dekker Inc., New York, (2004) 259–285, ISBN 13: 9780824756543

    Google Scholar 

  9. Nagai, B.: Recent advances in castable refractories. Taikabutsu Refract. 9 (1987) [1] 2–9

    Google Scholar 

  10. Parr C., Wohrmeyer, Ch.: The advantages of calcium alumina cement as a castable bonding system. Proc. of St Louis Section Meeting of American Ceramic Society, USA (2006) 20

    Google Scholar 

  11. Banerjee, S.: Recent developments in monolithic refractories. Am. Ceram. Soc. Bull. 77 (1998) [10] 59–63

    CAS  Google Scholar 

  12. Hongo, Y.: ρ-alumina bonded castable refractories. Taikabutsu Overseas 9 (1988) [1] 35–38

    Google Scholar 

  13. Kockegey-Lorenz, R.; Buchel, G.; Buhr, A.; Aroni, J.M.; Racher, R.P.: Improved workability of calcia-free alumina binder alphabond for non-cement castables. Proc. 47. Inter. Colloq. on Refractories, Verlag Stahleisen GmbH, Aachen, Germany (2004) 67–71

    Google Scholar 

  14. Ma, W., Brown, P.W.: Mechanisms of the reaction of hydratable aluminas. J. Am. Ceram. Soc. 82 (1999) [2] 453–456

    CAS  Google Scholar 

  15. Iler, R.K.: The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New York, (1979) 866 (ISBN 13: 9780471024040)

    Google Scholar 

  16. Banerjee, S.: Versatility of gel bond castable/pumpable refractories. Refract. Appl. and News 6 (2001) [1] 1–3

    Google Scholar 

  17. Musikant, S.: What every engineer should know about ceramics. Preface, Marcel Dekker Inc., New York, (1991) (ISBN 139780824784980)

    Google Scholar 

  18. Hornyak, G.L., Moore, J.J., Tibba:ls, H.F., Dutta, J.: Fundamentals of nanotechnology, CRC Press, Florida, US (2008) (ISBN 13: 9781420048032)

    Google Scholar 

  19. Tamura, S., Ochiai, T., Takanaga, S., Nakamura, H.: Nano-Tech. refractories — 1: The development of the nano structural matrix. Proc. Unified Inter. Tech. Conf. on Refractories, Osaka, Japan, October 19–22, (2003) 517–520

    Google Scholar 

  20. Takanaga, S., Ochiai, T., Tamyra, S., Nakamura, H.: Nano-tech refractories 2: The development of the nano structural matrix to MgO-C bricks, Proceedings of the 8. UNITECR-03, Osaka, Japan, October 19–22 (2003) 521–524

    Google Scholar 

  21. Guimaraes, R., Lee, E.W.: Nanotechnology for the refractories industry: A foresight perspective. Refract. Eng. 12 (2007) 12–19

    Google Scholar 

  22. Garbers-Craig, A.M.: How cool are refractory materials? J. S. Afr. Inst. Min. Metall. 108 (2008) 491

    CAS  Google Scholar 

  23. Kuznecov, D., Nemtinov, A., Shaleiko, A.: Promises of using of nano materials in technology of refractories. New Refract. 4 (2009) 6

    Google Scholar 

  24. Braulio, M.A.L., Morbioli, G.G., Medeiros, J., Gallo, J.B., Pandolfelli, V.C.: Nanobonded wide temperature range designed refractory castables. J. Am. Ceram. Soc. 95 (2012) 1100

    CAS  Google Scholar 

  25. Luz, A.P., Silva Neto, A.B., Santos Jr., T., Medeiros, J., Pandolfelli, V.C.: Mullite-based refractory castable engineering for the petrochemical industry. Ceram. Int. 39 (2013) 9063

    CAS  Google Scholar 

  26. Luz, A.P., Santos, T., Pandolfelli, V.C., Medeiros, J.: High-alumina boron-containing refractory castables. Int. J. Appl. Ceram. Technol. 11 (2014) 977

    CAS  Google Scholar 

  27. Ismael, M.R., Anjos, R.D., Salomão, R., Pandolfelli, V.C.: Colloidal silica as a nano structured binder for refractory castables. Refract. Appl. News. 11 (2006) 16

    CAS  Google Scholar 

  28. Braulio, M.A.L., Tontrup, C., Medeiros, J., Pandolfelli, V.C.: Colloidal alumina as a novel castable bonding system. Refract. World Forum 3 (2011) 136

    Google Scholar 

  29. Anderson, M.: Better refractories through nanotechnology. Ceram. Ind. Mag. 155 (2005) 29

    Google Scholar 

  30. Das, S.K., Sarkar, R., Mondal, P.K., Mukherjee, S.: No cement high-alumina self flow castable. Am. Ceram. Soc. Bull. 82 (2003) [2] 55–59

    CAS  Google Scholar 

  31. Sarkar, R., Mukherjee, S., Ghosh, A.: Gel bonded Al2O3-SiC-C based blast furnace trough castable. Am. Ceram. Soc. Bull. (https://doi.org/www.ceramicbulletin.org) 85 (2006) [5] 9101–9105

    Google Scholar 

  32. Singh, A.K., Sarkar R.: Effect of binders and distribution coefficient on the properties of high-alumina castables. J. Austr. Ceram. Soc. 50 (2014) [2] 93–98

    CAS  Google Scholar 

  33. Singh, A.K., Sarkar R.: Synthesis and characterization of alumina sol and its use as binder in no cement high-alumina refractory castables. Int. J. Appl. Ceram. Technol. 12 (2015) [S3] E54–E60

    CAS  Google Scholar 

  34. Singh, A.K., Sarkar R.: High-alumina castables: Effect of alumina sols and distribution coefficients. Trans. Ind. Ceram. Soc. 74 (2015) [4] 225–231

    CAS  Google Scholar 

  35. Singh, A.K., Sarkar, R.: Nano mullite bonded refractory castable composition for high temperature applications. Ceram. Inter. 42 (2016) [11] 12937–12945

    CAS  Google Scholar 

  36. Singh, A.K., Sarkar, R.: Development of spinel sol bonded high pure alumina castable. Ceram. Inter. 42 (2016) [15] 17410–17419

    CAS  Google Scholar 

  37. Singh, A.K., Sarkar R.: High-alumina castables: A comparison among various sol-gel bonding systems. J. Austral. Ceram. Soc. 53 (2017) [2] 553–567

    Google Scholar 

  38. Lipinski, T.R., Drygalska, E., Tontrup, C.: The influence of additions of nanostructured Al2O3-powder on the high temperature strength of high-alumina refractories. Summary Booklet (Abstracts) Unified Inter. Tech. Conf. on Refractories, Salvador, Brazil. October 13–16 (2009) 12

    Google Scholar 

  39. Lipinski, T.R., Tontrup, C.: The use of nano-scaled alumina in alumina-based refractory materials, Proc. Unif. Int. Tech. Conf. Refract. Dresden, Germany, September 18–21 (2007) 391–393

    Google Scholar 

  40. Otroj, S., Marzban, R., Nemati, Z.A., Sajadi, N., Nilforoushan, M.R.: Behavior of alumina-spinel self-flowing castables with nano-alumina particles addition. Ceram. Silik. 53 (2009) 98

    CAS  Google Scholar 

  41. Arasu, V.C., Adak, S., Chattopadhyay, A.K., Kamath, C.D.: Influence of nano additives on thermo mechanical properties of alumina castables. Summary Booklet (Abstracts) Unified Inter. Tech. Conf. on Refractories, Salvador, Brazil, October 13–16 (2009) 24

    Google Scholar 

  42. Ghasemi-Kahrizsangi, S., Dehsheikh, H.G., Karamian, E., Ghasemi-Kahrizsangi, A., Hosseini, S.V.: The influence of Al2O3 nanoparticles addition on the microstructure and properties of bauxite self-flowing low-cement castables. Ceram. Int. 43 (2017) 8813

    CAS  Google Scholar 

  43. Otroj, S., Daghighi, A.: Microstructure and phase evolution of alumina-spinel self-flowing refractory castables containing nano-alumina particles. Ceram. Inter. 37 (2011) [3] 1003–1009

    CAS  Google Scholar 

  44. Yaghoubi, H., Sarpoolaky, H., Golestanifard, F., Souri, A.: Influence of nano silica on properties and microstructure of high-alumina ultra-low cement refractory castables. Iranian J. Mater. Sci. & Eng. 9 (2012) [2] 50–58

    CAS  Google Scholar 

  45. Wang, H., Bi, Y., Han, L., Meng, G., Zhou, N., Zhang, H., Zhang, S.: Effects of silica sol on the preparation and high-temperature mechanical properties of silicon oxynitride bonded SiC castables. Ceram. Int. 43 (2017) 10361

    CAS  Google Scholar 

  46. Badiee, S.H., Otroj, S.: Non-cement refractory castables containing nano-silica: performance, microstructure, properties. Ceramics-Silikáty 53 (2009) [4] 297–302

    CAS  Google Scholar 

  47. Badiee, S.H., Otroj, S.: The effect of nano-titania addition on the properties of high- alumina low cement self flowing refractory castables. Ceramics-Silikáty 55 (2011) 319

    CAS  Google Scholar 

  48. Gogtas, C., Lopeza, H., Konstantin, S.: Effect of nano-YSZ and nano-ZrO2 additions on the strength and toughness behavior of self-flowing alumina castables. Ceram. Int. 42 (2016) 1847

    CAS  Google Scholar 

  49. Gogtas, C.: Development of nano-ZrO2 reinforced self-flowing low and ultra low cement refractory castables. PhD Thesis, University of Wisconsin Milwaukee (2012)

    Google Scholar 

  50. Mukhopadhyay, S., Das Poddar, P.K: Role of nanocrystalline spinel additive on the properties of low cement castable refractories. Proc. Int. Conf. on Nanomaterials: Synthesis, Characterisation and Application, McGraw-Hill, 42-6 November, Kolkata, India (2004) 350–360

    Google Scholar 

  51. Ghosh, S., Sen, S., Maiti, T., Mukhopadhyay, S.: Influence of gel-derived nanocrystalline spinel in a high-alumina castable: Part 1. Ceram. Int. 31 (2005) [2] 333–347

    CAS  Google Scholar 

  52. Mukhopadhyay, S., Pal, P., Nag, B., Jana, P.: Influence of gel-derived nanocrystalline spinel in a high-alumina castable: Part 2. Ceram. Inter. 33 (2007) [2] 175–186

    CAS  Google Scholar 

  53. Khalil, N.M., Wahsh, M.M.S., Ewais, E.M.M., Hassan, M.B., Mehrez, S.M.: Improvement of mullite and magnesia-based refractory castables through addition of nano-spinel powder. Int J. Appl. Ceram. Tech. 10 (2013) [4] 655–670

    CAS  Google Scholar 

  54. Nouri-Khezrabad, M., Braulio, M.A.L., Pandolfelli, V.C., Golestani-Fard, F., Rezaie, H.R.: Nano-bonded refractory castables. Ceram. Int. 39 (2013) 3479

    CAS  Google Scholar 

  55. Viehland, D., Li, J.F., Yuan, L.J., Xu, Z.: Mesostructure of calcium silicate hydrate (C-S-H) gels in portland cement paste: Short-range ordering, nanocrystallinity, and local compositional order. J. Am. Ceram. Soc. 79 (1996) 1731

    CAS  Google Scholar 

  56. Antonovic, V., Stonys, R., Pundiene, I., Prosycevas, I., Fataraitė, F.: Investigation of structure formation in complex binder. Mater. Sci. 15 (2009) 343

    Google Scholar 

  57. Myhre, B., Hundere, A.M.: On the influence of superfines in high-alumina castables. Proc. Int. Colloq. Refract. Aachen, Germany (1996) 184–188

    Google Scholar 

  58. Myhre, B., Sandberg, B.: The use of microsilica in refractory castables. Proc. Int. Seminar on Monolithic Refract. Mater. Tehran, Iran (1997) 113–140

    Google Scholar 

  59. Lee, W.E., Moore, R.E.: Evolution of in situ refractories in the 20. Century. J. Am. Ceram. Soc. 81 (1998) 1385

    CAS  Google Scholar 

  60. Innocentini, M.D.M., Cardoso, F.A., Paiva, A.E.M., Pandolfelli, V.C.: Dewatering refractory castables. Am. Ceram. Soc. Bull. 83 (2004) 9101

    Google Scholar 

  61. Innocentini, M.D.M., Cardoso, F.A., Akiyoshi, A.M.M., Pandolfelli, V.C.: Drying stages during the heating of high-alumina, ultra-low cement refractory castables. J. Am. Ceram. Soc. 86 (2003) 1146

    CAS  Google Scholar 

  62. Cardoso, F.A, Innocentini, M.D.M., Akiyoshi, M.M., Pandolfelli, V.C.: Effect of curing conditions on the properties of ultralow cement refractory castables. Refract. Appl. News. 9 (2004) 12

    CAS  Google Scholar 

  63. Cardoso, F.A, Innocentini, M.D.M., Miranda, M.F.S., Valenzuela, F.A.O., Pandolfelli, V.C.: Drying behavior of hydratable alumina-bonded refractory castables. J. Eur. Ceram. Soc. 24 (2004) 797

    CAS  Google Scholar 

  64. Masaryk, J.S.: Development and use of low cement self flow castables. Proc. Unified Inter. Tech. Conf. on Refract., Sao Paulo, Brazil, October 312–November 3 (1993) 527–538

    Google Scholar 

  65. Bhattachariya, K., Chintaiah, P., Chakraborty, D.P., Mukhopadhyay, M.S.: Ultra low cement castables: a new generation of trough bodies for increased cast house life. Interceram 47 (1998) [4] 249–251

    Google Scholar 

  66. Studart, A.R., Pileggi, R.G., Jhong, W., Pandolfelli, V.C.: Processing of zero cement self-flow high-alumina refractory castables by matrix rheological control. Am. Ceram. Soc. Bull. 77 (1198) 60

    Google Scholar 

  67. Souri A. R., Mirhadi B., Kashani Nia F.: The effect of nano- structured colloidal silica on the properties of tabular alumina castables. Interceram 57 (2008) 414

    CAS  Google Scholar 

  68. Vance, M.W., Moody, K.J.: Steel plant refractories containing alpha bond hydratable alumina binders. Alcoa Tech. Bull. USA (1996)

    Google Scholar 

  69. Anderson, M.W., Shah, S.: Pumpable casting composition and method of use. US Patent 5494267, (1996)

    Google Scholar 

  70. Connors, C.W., Anderson, M.W.: Colloidal silica refractory system for an electric arc furnace. US Patent 6528011, (2003)

    Google Scholar 

  71. Sarkar, R., Das, S.K., Mandal, P.K., Mukherjee, S.N., Dasgupta, S., Das, S.K.: Fibre reinforced no cement self flow high-alumina castable: A study. Trans. Ind. Ceram. Soc. 62 (2003) [1] 1–4

    Google Scholar 

  72. Sarkar, R., Kumar, A., Das, S.P., Prasad, B.: Silica sol bonded high-alumina castable: Effect of reduced sol. Refract. World Forum, 7 (2015) [2] 83–87

    Google Scholar 

  73. Ismael, M.R.. Salomão, R., Pandolfelli, V.C.: Refractory castables based on colloidal silica and hydratable alumina. Am. Ceram. Soc. Bull. 89 (2007) 58–61

    Google Scholar 

  74. Hiemenz, P.C., Rajagopalan, R.: Principles of colloid and surface chemistry. 3. ed. CRC Press, New York, (1997) (ISBN 13: 9780824793975)

    Google Scholar 

  75. Cao, G.: Nanostructures and nanomaterials. Imperial College Press, London, UK, (2004) (ISBN 13: 9789814322508)

    Google Scholar 

  76. Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (2006) 427–556

    CAS  Google Scholar 

  77. Yu, J., Yang, J., Huang, Y.: The transformation mechanism from suspension to green body and the development of colloidal forming. Ceram. Int. 37 (2011)1435–1451

    Google Scholar 

  78. Jiquan, X., Yuntao, P., Dayong, X., Xuesong, M.: The characteristics of silica-sol combining refractories. Adv. Mater. Res. 3962–398 (2012) 288–291

    Google Scholar 

  79. Sarkar, R., Satpathy, A.: High-alumina self flow castable with different binders. Refract. World Forum 4 (2012) [4] 98–102

    Google Scholar 

  80. Zhu, X., Jiang, D., Tan, S., Zhang, Z.: Dispersion properties of alumina powders in silica sol. J. Eur. Ceram. Soc. 21 (2001) 2885

    Google Scholar 

  81. Souri, A., Kashaninia, F., Sarpoolaki, H.: Improving thermo-mechanical properties of tabular alumina castable via using nano-structured colloidal silica. Proc. 1. Inter. Conf. on Nanomaterials: Applications and Properties, Crimea, Ukraine, September 27–30 (2011) 254–259

    Google Scholar 

  82. Cao, F., Long, S., Wu, X., Telle, R.: Properties of sol-gel bonding castables. Key Eng. Mater. 3362–338 (2007) 1484–1487

    Google Scholar 

  83. Han, K.R., Park, S.W., Kim, C.S., Yang, J.O.: International Patent WO 2011 / 115352, September (2011)

    Google Scholar 

  84. Magliano, M., Prestes, E., Medeiros, J., Veiga, J., Pandolfelli, V.C.: Colloidal silica selection for nanobonded refractory castables. Refract. Appl. News 15 (2010) 14

    CAS  Google Scholar 

  85. Chen, S.K., Cheng, M.Y., Lin, S.J., Ko, Y.C.: Thermal characteristics of Al2O3-MgO and Al2O3-spinel castables for steel ladles. Ceram. Int. 28 (2002) 811

    CAS  Google Scholar 

  86. Braulio, M.A.L., Tontrup, C., Medeiros, J., Pandolfelli, V.C.: Colloidal alumina as a refractory binder. Proc. 35. Alafar Congr., Peru, December 6–9 (2010) 10–13

    Google Scholar 

  87. Mukhopadhyay, S., Dutta, S., Majumdar, M., Kundu, A., Das, S.K.: Synthesis and characterization of alumina bearing sol for application in refractory castables. Ind. Ceram. 20 (2000) [2] 88–92

    CAS  Google Scholar 

  88. Ghosh, S., Majumdar, R., Sinhamahapatra, B.K., Nandy, R.N., Mukherjee, M., Mukhopadhyay, S.: Microstructures of refractory castables prepared with sol-gel additives. Ceram. Int. 29 (2003) 671–677

    CAS  Google Scholar 

  89. Mukhopadhyay, S.: Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable. Ceram. Int. 28 (2002) 719–729

    CAS  Google Scholar 

  90. Singh, A.K.: Study on the effect of different sols on high-alumina castable refractory. PhD thesis, Nat. Inst. of Technol., Rourkela, India (2017)

    Google Scholar 

  91. Ismael, M.R., Salomão, R., Pandolfelli, V.C.: A combined binding system for refractory castables based on colloidal silica and hydratable alumina. Am. Ceram. Soc. Bull. 86 (2007) 58

    Google Scholar 

  92. Myhre, B., Sandberg, B.: Mullite formation in tabular alumina based refractory castables with hydraulic alumina as binder. Presented at The Am. Ceram. Soc. 97. Annual Meeting, OH, USA, April 30–May 3 (1995)

  93. Lorenz, R., Buchel, G., Buhr, A., Aronni, J., Racher, R.: Improved workability of calcia free alumina binder alpha-bond for non-cement castables. Proc. Int. Colloq. Refract. Aachen, Germany, (2004) 67–71

    Google Scholar 

  94. Innocentini, M.D.M., Pardo, A.R.F., Pandolfelli, V.C.: Permeability of high- alumina refractory castables based on various hydraulic binders. J. Am. Ceram. Soc. 85 (2002) 1517

    CAS  Google Scholar 

  95. Pundene, I., Antonovich, V., Stonys, R.: Effect of composite deflocculant on the properties of medium-cement heat-resistant concrete. Refract. Indust. Ceram. 50 (2009) 441

    CAS  Google Scholar 

  96. Wohrmeyer, C., Alt, C., Kreuels, N.: Calcium aluminate aggregates for use in refractory castables. Presented at the 35. Am. Ceram. Soc. Symp. St. Louis, Missouri, USA, March (1999)

    Google Scholar 

  97. Braulio, M.A.L., Pandolfelli, V.C.: Tailoring the microstructure of cement-bonded alumina-magnesia refractory castables. J. Am. Ceram. Soc. 93 (2010) 2981

    CAS  Google Scholar 

  98. Braulio, M.A.L., Morbioli, G.G., Pandolfelli, V.C.: Advanced boron-containing Al2O3-MgO refractory castables. J. Am. Ceram. Soc. 94 (2011) 3467

    CAS  Google Scholar 

  99. Prestes, E., Luz, A.P., Pandolfelli, V.C.: Sintering effect of Al and a boron source in high-alumina nano-bonded refractory castables. Interceram-Refract. Man. II (2015) 177–181

    Google Scholar 

  100. Corbin, S., McIsaac, D. Differential scanning calorimetry of the stages of transient liquid phase sintering. Mater. Sci. Eng. A 346 (2003) 132

    Google Scholar 

  101. Amutha Rani, D., Gnanam, F.D.: Sol gel mullite as the self-bonding material for refractory applications. Ceram. Int. 26 (2000) 347–350

    Google Scholar 

  102. Mandal, B., Sarkar, R., Das Poddar, P.K.: Effect of different mullite precursors on the properties of low cement high-alumina castable. Ind. Ceram. 31 (2011) [3] 217–222

    CAS  Google Scholar 

  103. Mukhopadhyaya, S., Das Poddar, P.K.: Effect of preformed and in-situ spinels on microstructure and properties of a low cement refractory castable. Ceram. Int. 30 (2004) 369–380

    Google Scholar 

  104. Lührs, H., Fischer, R.X., Schneider, H.: Boron mullite: formation and basic characterization, Mater. Res. Bull. 47 (2012) 4031

    Google Scholar 

  105. Maizo, I.D.G., Luz, A.P., Pagliosa, C., Pandolfelli, V.C.: Boron sources as sintering additives for alumina-based refractory castables. Ceram. Int. 43 (2017) 10207

    Google Scholar 

  106. Auvray, J.M., Gault, C., Huger, M.: Microstructural changes and evolutions of elastic properties versus temperature in bonding phases of alumina and alumina-magnesia refractory castables. J. Eur. Ceram. Soc. 27 (2007) 3489

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R. Nanotechnology in Refractory Castables — An Overview. Interceram. - Int. Ceram. Rev. 67 (Suppl 1), 22–31 (2018). https://doi.org/10.1007/s42411-018-0039-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-018-0039-7

Keywords

Navigation