A Practical Optimal Guidance Scheme Under Impact Angle and Terminal Acceleration Constraints


This paper proposes a practical optimal guidance law that can handle terminal angle and acceleration constraints while providing robustness against uncertainty in autopilot dynamics. Building upon a well-established linear-quadratic optimal guidance framework, we first derive an energy-minimizing guidance scheme that nullifies terminal acceleration called optimal guidance law with impact angle and terminal acceleration constraints (OGL–IATA). Then, a practical modification to OGL–IATA is proposed to deal with the stability degradation of OGL–IATA due to unmodeled high-order autopilot dynamics. The modification primarily features feedback of pseudo-acceleration that is computed by passing the true acceleration signal through approximate missile dynamics; this simple modification is demonstrated to improve the stability margin of the guidance loop. Numerical examples of nonlinear engagement kinematics demonstrate the performance and the robustness characteristics of the proposed practical guidance scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Murtaugh SA, Criel HE (1966) Fundamentals of proportional navigation. IEEE Spectr 3(12):75–85

    Article  Google Scholar 

  2. 2.

    Benecke T, Quick AW (1956) History of German guided missile development. In: Proceedings of AGARD first guided missile seminar, 1956

  3. 3.

    Nesline FW, Zarchan P (1981) A new look at classical versus modern homing guidance. J Guid Control Dyn 4:78–85

    Article  Google Scholar 

  4. 4.

    Fossier MW (1984) The development of radar homing missiles. J Guid Control Dyn 7:641–651

    Article  Google Scholar 

  5. 5.

    Yuan CL (1948) Homing and navigation courses of automatic target-seeking devices. J Appl Phys 19:1122–1128

    Article  Google Scholar 

  6. 6.

    Ochi Y, Kominami T (2005) Flight control for automatic aerial refueling via PNG and LOS angle control. In: AIAA guidance, navigation, and control conference and exhibit, p 6268, 2005

  7. 7.

    Yamasaki T et al (2007) Robust trajectory-tracking method for UAV guidance using proportional navigation. In: 2007 international conference on control, automation and systems, pp 1404–1409, 2007

  8. 8.

    Han D, Wang XI, Zhao M, Duan DP (2017) An improved proportional navigation guidance law for waypoint navigation of airships. In: Information technology and intelligent transportation systems. pp 373–383

  9. 9.

    He S, Lee CH, Shin HS, Tsourdos A (2019) Minimum-effort waypoint-following guidance. J Guid Control Dyn 42(7):1551–1561

    Article  Google Scholar 

  10. 10.

    Zarchan P (2012) Tactical and strategic missile guidance, 6th edn. American Institute of Aeronautics and Astronautics, Washington DC

    Book  Google Scholar 

  11. 11.

    Bryson A, Ho YC (1975) Applied optimal control. Wiley, New York

    Google Scholar 

  12. 12.

    Lin CF (1991) Modern navigation, guidance, and control processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  13. 13.

    Shaferman V, Shima T (2008) Linear quadratic guidance laws for imposing a terminal intercept angle. J Guid Control Dyn 31(5):1400–1412

    Article  Google Scholar 

  14. 14.

    Ryoo CK, Cho H, Tahk MJ (2005) Optimal guidance laws with terminal impact angle constraint. J Guid Control Dyn 28(4):724–732

    Article  Google Scholar 

  15. 15.

    J.I. lee, J.I. Soo, C.H. Lee, (2014) Command-shaping guidance law based on gaussian weighting function. IEEE Trans Aerosp Electron Syst 50(1):772–777

    Article  Google Scholar 

  16. 16.

    Moon J, Kim Y (2001) Design of missile guidance law via variable structure control. J Guid Control Dyn 24(6):659–664

    Article  Google Scholar 

  17. 17.

    Shima T, Idan M, Golan OM (2006) Sliding-mode control for integrated missile autopilot guidance. J Guid Control Dyn 29(2):250–260

    Article  Google Scholar 

  18. 18.

    Bezick S, Rusnak I, Gray WS (1995) Guidance of a homing missile via nonlinear geometric control method. J Guid Control Dyn 18(3):441–448

    Article  Google Scholar 

  19. 19.

    Lee CH, Shin HS, Lee JI, Tahk MJ (2017) Zero-effort-miss shaping guidance laws. IEEE Trans Aerosp Electron Syst 54(2):693–705

    Article  Google Scholar 

  20. 20.

    Yang CD, Chen HY (1998) Nonlinear H-infinity robust guidance law for homing missiles. J Guid Control Dyn 21(6):882–890

    Article  Google Scholar 

  21. 21.

    Talole SE, Banavar RN (1998) Proportional navigation through predictive control. J Guid Control Dyn 21(6):1004–1006

    Article  Google Scholar 

  22. 22.

    Tekin R, Erer KS, Holzapfel F (2017) Polynomial shaping of the look angle for impact-time control. J Guid Control Dyn 40(10):2668–2673

    Article  Google Scholar 

  23. 23.

    Lee CH, Kim TH, Tahk MJ, Whang IH (2013) Polynomial guidance laws considering terminal impact angle and acceleration constraints. IEEE Trans Aerosp Electron Syst 49(1):74–92

    Article  Google Scholar 

  24. 24.

    Moon HB, Jung YK, Ra WS (2015) Terminal acceleration stabilizing guidance law for impact angle constrained interception of a non-maneuvering target. Int J Control Autom Syst 13(6):1410–1422

    Article  Google Scholar 

  25. 25.

    Ryoo CK, Cho H, Tahk MJ (2006) Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans Control System Technol 14(3):483–492

    Article  Google Scholar 

  26. 26.

    Ohlmeyer EJ, Phillips CA (2006) Generalized vector explicit guidance. J Guid Control Dyn 29(2):261–268

    Article  Google Scholar 

  27. 27.

    Lee CH, Lee JI, Tahk MJ (2015) Sinusoidal function weighted optimal guidance laws. Proc Inst Mech Eng Part G J Aerosp Eng 229(3):534–542

    Article  Google Scholar 

  28. 28.

    Ryu MY, Lee CH, Tahk MJ (2015) Command shaping optimal guidance laws against high-speed incoming targets. J Guid Control Dyn 38(10):2025–2033

    Article  Google Scholar 

  29. 29.

    Lee YI, Ryoo CK, Kim E (2003) Optimal guidance with constraints on impact angle and terminal acceleration. In: AIAA guidance and control conference and exhibit, AIAA paper 2003-5795, 2003

  30. 30.

    Nesline FW, Wells BH, Zarchan P (1981) A combined optimal/classical approach to robust missile autopilot design. AIAA Guid Control 4(3):316–322

    Article  Google Scholar 

  31. 31.

    Lee CH, Jun BE, Lee JI (2016) Connection between linear and nonlinear missile autopilots via three-loop topology. J Guid Control Dyn 39(6):1424–1430

    Article  Google Scholar 

  32. 32.

    Skogestad S, Postlethwaite I (2007) Multivariable feedback control: analysis and design. Wiley, New York

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Han-Lim Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chi, HS., Lee, YI., Lee, CH. et al. A Practical Optimal Guidance Scheme Under Impact Angle and Terminal Acceleration Constraints. Int. J. Aeronaut. Space Sci. (2021). https://doi.org/10.1007/s42405-020-00339-7

Download citation


  • Optimal guidance law
  • Terminal acceleration constraint
  • Pseudo acceleration feedback
  • Stability analysis