Effects of Attitude Parameterization Methods on Attitude Controller Performance

Abstract

This paper intends to compare the effect of the attitude parameterization method on the performance of the attitude controller designed with the direct feedback of corresponding attitude states. To achieve this, the proportional-derivative controllers using the finite rotation angles and the modified Rodrigues parameters are designed with the same structure and equivalent performance of the direct quaternion-feedback control. It has been demonstrated through a series of comparative analyses that three different parameterization methods can be commonly used in designing their direct feedbacks for the spacecraft’s attitude control. Next, the effects of the nonlinear transform relations among three parameterizations are thoroughly investigated through the controller-response analyses for an eigen-axis rest-to-rest maneuver with varying the initial angular position. The controller designed with the finite rotation angles shows a consistent performance regardless of the initial angular position. Whereas, those using other two methods show large variations in their response characteristics. From the results, it can be concluded that the direct feedback controller designed with the finite rotation angles outperforms those using the modified Rodrigues parameters or the quaternion, especially when the spacecraft experiences an aggressive maneuver or has a wide operating range of the attitude.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Wie, B, Barba PM (1985) Quaternion feedback for spacecraft large angle maneuvers. J Guid Control Dyn 8(3):360–365. https://doi.org/10.2514/3.19988

    Article  MATH  Google Scholar 

  2. 2.

    Stuelpnagel J (1964) On the parameterization of the three-dimensional rotation group. SIAM Review 6(4):422–430. https://doi.org/10.1137/1006093

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41(4):439–517

    MathSciNet  Google Scholar 

  4. 4.

    Wie B, Weiss H, Arapostathis A (1989) Quaternion feedback regulator for spacecraft eigenaxis rotations. J Guid Control Dyn 12(3):375–380. https://doi.org/10.2514/3.20418

    MathSciNet  Article  Google Scholar 

  5. 5.

    Joshi SM, Kelkar AG, Wen JT-Y (1995) Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Trans Autom Control 40(10):1800–1803. https://doi.org/10.1109/9.467669

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cristi R, Burl J, Russo N (1994) Adaptive quaternion feedback regulation for eigenaxis rotations. J Guid Control Dyn 17(6):1287–1291. https://doi.org/10.2514/3.21346

    Article  MATH  Google Scholar 

  7. 7.

    Weiss H (1993) Quaternion-based rate/attitude tracking system with application to gimbal attitude control. J Guid Control Dyn 16(4):609–616. https://doi.org/10.2514/3.21057

    Article  Google Scholar 

  8. 8.

    Bilimoria KD, Wie B (1993) Time-optimal three-axis reorientation of a rigid spacecraft. J Guid Control Dyn 16(3):446–452. https://doi.org/10.2514/3.21030

    Article  Google Scholar 

  9. 9.

    Tsiotras P (1998) Further passivity results for the attitude control problem. IEEE Trans Autom Control 43(11):1597–1600. https://doi.org/10.1109/9.728877

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Tsiotras P (1996) Stabilization and optimality results for the attitude control problem. J Guid Control Dyn 19(4):772–779. https://doi.org/10.2514/3.21698

    Article  MATH  Google Scholar 

  11. 11.

    Crassidis JL, Markley FL (1996) Sliding mode control using modified Rodrigues parameters. J Guid Control Dyn 19(6):1381–1383. https://doi.org/10.2514/3.21798

    Article  MATH  Google Scholar 

  12. 12.

    Junkins JL, Akella MR, Robinett RD (1997) Nonlinear adaptive control of spacecraft maneuvers. J Guid Control Dyn 20(6):1104–1110. https://doi.org/10.2514/2.4192

    Article  MATH  Google Scholar 

  13. 13.

    Sharma R, Tewari A (2004) Optimal nonlinear tracking of spacecraft attitude maneuvers. IEEE Trans Control Syst Technol 12(5):677–682. https://doi.org/10.1109/TCST.2004.825060

    Article  Google Scholar 

  14. 14.

    Akella MR (2001) Rigid body attitude tracking without angular velocity feedback. Syst Control Lett 42(4):321–326. https://doi.org/10.1016/S0167-6911(00)00102-X

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Bortz JE (1971) A new mathematical formulation for strapdown inertial navigation. IEEE Trans Aerosp Electron Syst 1:61–66. https://doi.org/10.1109/TAES.1971.310252

    Article  Google Scholar 

  16. 16.

    Nazaroff GJ (1979) The orientation vector differential equation. J Guid Control Dyn 2(4):351–352. https://doi.org/10.2514/3.55888

    Article  Google Scholar 

  17. 17.

    Sacleux B (1999) Rotation vector-based attitude control design. In: AIAA guidance, navigation and control conference and exhibit, Portland, OR, USA, 1999, pp 1941–1948. https://doi.org/10.2514/6.1999-4311

  18. 18.

    Pece CAZ (2002) An engineering vector-like approach to attitude kinematics and nominal attitude state tracking control. PhD Thesis Instituto Tecnologico de Aeronautica Sao Jose dos Campos, SP, Brasil

  19. 19.

    Kim CJ, Hur SW, Ko JS (2017) On the use of finite rotation angles for spacecraft attitude control. Int J Aeronaut Sp Sci 18(2):300–314. https://doi.org/10.5139/IJASS.2017.18.2.300

    Article  Google Scholar 

  20. 20.

    de Ruiter AD, Damaren CJ (2001) Effect of attitude parameterization on the performance of passivity-based adaptive attitude control, AIAA Guidance, Navigation and Control conference and Exhibit, Montreal. Canada. https://doi.org/10.2514/6.2001-4154

    Article  Google Scholar 

  21. 21.

    Casey RT, Karpenko M, Curry R, Elkaim GH (2013) Attitude representation and kinematic propagation for low-cost UAVs. In: AIAA guidance, navigation and control conferences, Boston, MA. https://doi.org/10.2514/6.2013-4615

  22. 22.

    Ventura J, Romano M, Walter U (2015) Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation. Acta Astronaut 110:266–278. https://doi.org/10.1016/j.actaastro.2014.11.041

    Article  Google Scholar 

  23. 23.

    Stevens BL, Lewis FL, Johnson EN (2015) Aircraft control and simulation: dynamics, controls design, and autonomous systems. Wiley. https://doi.org/10.1002/9781119174882

Download references

Acknowledgements

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 20CHTR-C139566-04).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Joo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix intends to show how accurate kinematics associated with three-parameter finite rotation angles can be obtained without singularity when the attitude \(\theta\) approaches zero. For this purpose, function values used in the kinematics, such as \({\mathbf{f}}(\theta )\) and \({\mathbf{g}}(\theta )\), are approximated using the Taylor series expansion of trigonometric functions, as shown in Eqs. (29) and (30) [23]. Less than four terms are enough to achieve the machine precision when \(\theta\) becomes less than 1 degree.

$$\sin \theta \cong \theta - \frac{{\theta^{3} }}{3!} + \frac{{\theta^{5} }}{5!} - \frac{{\theta^{7} }}{7!},$$
(29)
$$\cos \theta \cong 1 - \frac{{\theta^{2} }}{2!} + \frac{{\theta^{4} }}{4!} - \frac{{\theta^{6} }}{6!}.$$
(30)

Applying the above equations to Eqs. (4) and (10), the functions used in the kinematics can be approximated using (31) to accurately estimate \({\mathbf{T}}\) and \({\dot{\mathbf{\theta }}}\) when the angular displacement is small enough.

$$\begin{gathered} g(\theta ) = \frac{\sin \theta }{\theta } \cong 1 - \frac{{\theta^{2} }}{3!} + \frac{{\theta^{4} }}{5!} - \frac{{\theta^{6} }}{7!}, \hfill \\ f(\theta ) = \frac{1 - \cos \theta }{{\theta^{2} }} \cong \frac{1}{2!} - \frac{{\theta^{2} }}{4!} + \frac{{\theta^{4} }}{6!}, \hfill \\ h(\theta ) = \frac{\theta - \sin \theta }{{\theta^{3} }} \cong \frac{1}{3!} - \frac{{\theta^{2} }}{5!} + \frac{{\theta^{4} }}{7!}. \hfill \\ \end{gathered}$$
(31)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hur, S.W., Lee, S.H. & Kim, CJ. Effects of Attitude Parameterization Methods on Attitude Controller Performance. Int. J. Aeronaut. Space Sci. 22, 176–185 (2021). https://doi.org/10.1007/s42405-020-00286-3

Download citation

Keywords

  • Attitude parameterization
  • Feedback linearization
  • Eigen-axis maneuver
  • Control performance