Skip to main content
Log in

Closed-Loop Bifurcation Analysis for a Novel Moving Mass Flight Vehicle

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

In this paper, nonlinear dynamics properties regarding a novel moving mass flight vehicle with large mass ratio are investigated based on bifurcation theory and continuation methods. Of particular interest is the impact of variation of command angle-of-attack and moving mass parameters on the controlled system. The nonlinear longitudinal dynamics model is established and the controller is designed using Immersion and Invariance method. Bifurcation analysis is conducted both from the prospective of static bifurcation and dynamical bifurcation, results of the closed-loop system are compared with the uncontrolled case. Numerical results obtained from bifurcation diagrams indicate that although the introduction of control system is capable of eliminating unstable regions caused by the variation of moving mass parameters, the change of command angle-of-attack still lead to Hopf bifurcation. Furthermore, analysis of limit cycle branch reveals the consecutive birth of Limit Point of Cycle bifurcation (LPC), then based on which a more detailed nonlinear dynamics process of the closed-loop system is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chesi S, Gong Q, Romano M (2017) Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting. J Guid Control Dyn 40(7):1613–1626. https://doi.org/10.2514/1.g002460

    Article  Google Scholar 

  2. Rogers J, Costello M (2008) Control authority of a projectile equipped with a controllable internal translating mass. J Guid Control Dyn 31(5):1323–1333. https://doi.org/10.2514/1.33961

    Article  Google Scholar 

  3. Rogers J, Costello M (2008) A variable stability projectile using an internal moving mass. Proc Inst Mech Eng Part G J Aerosp Eng 223(7):927–938. https://doi.org/10.1243/09544100JAERO509

    Article  Google Scholar 

  4. Erturk SA, Dogan A (2017) Dynamic simulation and control of mass-actuated airplane. J Guid Control Dyn 40(8):1–15. https://doi.org/10.2514/6.2017-1637

    Article  Google Scholar 

  5. Erturk SA, Dogan A (2013) Trim analysis of a moving-mass actuated airplane in steady turn. In: AIAA Atmospheric Flight Mechanics Conference, Texas, USA, Jan, 2013. https://doi.org/10.2514/6.2012-4647

  6. Li J, Gao C, Jing W, Wei P (2017) Dynamic analysis and control of novel moving mass flight vehicle. Acta Astronaut 131:36–44. https://doi.org/10.1016/j.actaastro.2016.11.023

    Article  Google Scholar 

  7. Frost G, Costello M (2004) Linear theory of a rotating internal part projectile configuration in atmospheric flight. J Guid Control Dyn 27(27):898–906. https://doi.org/10.2514/1.1115

    Article  Google Scholar 

  8. Costello M, Peterson A (2000) Linear theory of a dual-spin projectile in atmospheric flight. J Guid Control Dyn 23(5):62. https://doi.org/10.2514/2.4639

    Article  Google Scholar 

  9. Li J, Gao C, Jing W et al (2017) Nonlinear vibration analysis of a novel moving mass flight vehicle [J]. Nonlinear Dyn 90(1):733–748. https://doi.org/10.1007/s11071-017-3691-y

    Article  Google Scholar 

  10. Kuznetsov YA (2004) Elements of applied bifurcation theory [J]. Appl Math Sci 288(2):715–730. https://doi.org/10.1007/b98848

    Article  Google Scholar 

  11. Hou L, Chen Y, Lu Z, Li Z (2015) Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load. Nonlinear Dyn 81(1–2):1–17. https://doi.org/10.1007/s11071-015-2009-1

    Article  MATH  Google Scholar 

  12. Salles L, Staples B, Hoffmann N, Schwingshackl C (2016) Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions. Nonlinear Dyn 86(3):1897–1911. https://doi.org/10.1007/s11071-016-3003-y

    Article  Google Scholar 

  13. Sun L, Zhao G, Huang H (2013) Stability and control of tethered satellite with chemical propulsion in orbital plane. Nonlinear Dyn 74(4):1113–1131. https://doi.org/10.1007/s11071-013-1028-z

    Article  MATH  Google Scholar 

  14. Rezgui D, Lowenberg MH, Jones M et al (2014) Continuation and bifurcation analysis in helicopter aeroelastic stability problems [J]. J Guid Control Dyn 37(3):889–897. https://doi.org/10.2514/1.60193

    Article  Google Scholar 

  15. Zhang F, Huang P, Meng Z et al (2017) Dynamics analysis and controller design for maneuverable tethered space net robot [J]. J Guid Control Dyn 40(11):1–16. https://doi.org/10.2514/1.G002656

    Article  Google Scholar 

  16. Huang P, Hu Z, Zhang F (2016) Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system [J]. Multibody Syst Dyn 36(2):115–141. https://doi.org/10.1007/s11044-015-9478-3

    Article  MathSciNet  Google Scholar 

  17. Huang P, Wang D, Meng Z et al (2016) Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties [J]. IEEE/ASME Trans Mechatron 21(5):2260–2271. https://doi.org/10.1109/TMECH.2016.2569466

    Article  Google Scholar 

  18. Carroll JV, Mehra RK (1982) Bifurcation analysis of nonlinear aircraft dynamics [J]. J Guid Control Dyn 5(5):529–536. https://doi.org/10.2514/3.56198

    Article  MATH  Google Scholar 

  19. Goman MG, Zagainov GI, Khramtsovsky AV (1997) Application of bifurcation methods to nonlinear flight dynamics problems [J]. Prog Aerosp Sci 33(9–10):539–586. https://doi.org/10.1016/S0376-0421(97)00001-8

    Article  Google Scholar 

  20. Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs [J]. ACM Trans Math Softw 29(2):141–164. https://doi.org/10.1145/779359.779362

    Article  MathSciNet  MATH  Google Scholar 

  21. Baghdadi NM, Lowenberg MH, Isikveren AT (2011) Analysis of flexible aircraft dynamics using bifurcation methods. J Guid Control Dyn 34(3):795–809. https://doi.org/10.2514/1.51468

    Article  Google Scholar 

  22. Gill SJ, Lowenberg MH, Neild SA, Crespo LG, Krauskopf B, Puyou G (2015) Nonlinear dynamics of aircraft controller characteristics outside the standard flight envelope. J Guid Control Dyn 38(12):1–8. https://doi.org/10.2514/1.G000966

    Article  Google Scholar 

  23. Gill SJ, Lowenberg MH, Neild SA, Crespo LG, Krauskopf B (2016) Impact of controller delays on the nonlinear dynamics of remotely piloted aircraft. J Guid Control Dyn 39(2):1–9. https://doi.org/10.2514/1.G001222

    Article  Google Scholar 

  24. Kwatny HG, Dongmo JET, Chang BC, Bajpai G, Yasar M, Belcastro C (2013) Nonlinear analysis of aircraft loss of control. J Guid Control Dyn 36(1):149–162. https://doi.org/10.2514/1.56948

    Article  Google Scholar 

  25. Khatri AK, Singh J, Sinha NK (2012) Aircraft maneuver design using bifurcation analysis and sliding mode control techniques. J Guid Control Dyn 35(5):1435–1449. https://doi.org/10.2514/1.56361

    Article  Google Scholar 

  26. Gao C, Jing W, Wei P (2014) Roll control problem for the long-range maneuverable warhead. Aircr Eng Aerosp Technol 86(5):440–446. https://doi.org/10.1108/AEAT-10-2012-0170

    Article  Google Scholar 

  27. Astolfi A, Ortega R (2003) Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans Autom Control 48(4):590–606. https://doi.org/10.1109/TAC.2003.809820

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant no. 11572097) and Aerospace Science and Technology Innovation Foundation of China (Grant no. CASC-HIT13-1C03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Gao, C., Li, J. et al. Closed-Loop Bifurcation Analysis for a Novel Moving Mass Flight Vehicle. Int. J. Aeronaut. Space Sci. 19, 962–975 (2018). https://doi.org/10.1007/s42405-018-0082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-018-0082-7

Keywords

Navigation