Skip to main content
Log in

Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wertz JR (1978) Spacecraft attitude determination and control, vol 73, 1st edn. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9907-7

    Book  Google Scholar 

  2. Schaub H, Junkins JL (2014) Analytical mechanics of space systems, 3rd edn. American Institute of Aeronautics and Astronautics Inc., Washington, DC. https://doi.org/10.2514/4.102400

    MATH  Google Scholar 

  3. Sidi MJ (1997) Spacecraft dynamics and control: a practical engineering approach. Cambridge aerospace series. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Markley FL, Crassidis JL (2014) Fundamentals of spacecraft attitude determination and control, 1st edn. Springer, New York. https://doi.org/10.1007/978-1-4939-0802-8

    MATH  Google Scholar 

  5. Wen JT-Y, Kreutz-Delgado K (1991) The attitude control problem. IEEE Trans Autom Control 36(10):1148–1162. https://doi.org/10.1109/9.90228

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaturvedi N, Sanyal A, McClamroch N (2011) Rigid-body attitude control. IEEE Control Syst 31(3):30–51. https://doi.org/10.1109/MCS.2011.940459

    Article  MathSciNet  Google Scholar 

  7. Bhat SP, Bernstein DS (2000) A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst Control Lett 39(1):63–70. https://doi.org/10.1016/S0167-6911(99)00090-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Tsiotras P (1996) Stabilization and optimality results for the attitude control problem. J Guid Control Dyn 19(4):772–779. https://doi.org/10.2514/3.21698

    Article  MATH  Google Scholar 

  9. Wie B, Barba PM (1985) Quaternion feedback for spacecraft large angle maneuvers. J Guid Control Dyn 8(3):360–365. https://doi.org/10.2514/3.19988

    Article  MATH  Google Scholar 

  10. Salcudean S (1991) A globally convergent angular velocity observer for rigid body motion. IEEE Trans Autom Control 36(12):1493–1497. https://doi.org/10.1109/9.106169

    Article  MathSciNet  MATH  Google Scholar 

  11. Lizarralde F, Wen JT (1996) Attitude control without angular velocity measurement: a passivity approach. IEEE Trans Autom Control 41(3):468–472. https://doi.org/10.1109/9.486654

    Article  MathSciNet  MATH  Google Scholar 

  12. Tsiotras P (1998) Further passivity results for the attitude control problem. IEEE Trans Autom Control 43(11):1597–1600. https://doi.org/10.1109/9.728877

    Article  MathSciNet  MATH  Google Scholar 

  13. Tayebi A (2008) Unit quaternion-based output feedback for the attitude tracking problem. IEEE Trans Autom Control 53(6):1516–1520. https://doi.org/10.1109/TAC.2008.927789

    Article  MathSciNet  MATH  Google Scholar 

  14. Zou A-M (2014) Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Trans Control Syst Technol 22(1):338–345. https://doi.org/10.1109/TCST.2013.2246836

    Article  Google Scholar 

  15. Capua A, Shapiro A, Choukroun D (2014) Robust nonlinear H\(\infty \) output-feedback for spacecraft attitude control. In: AIAA guidance, navigation, and control conference

  16. Show L-L, Juang J-C, Jan Y-W (2003) An LMI-based nonlinear attitude control approach. IEEE Trans Control Syst Technol 11(1):73–83. https://doi.org/10.1109/TCST.2002.806450

    Article  Google Scholar 

  17. Singh S (1987) Robust nonlinear attitude control of flexible spacecraft. IEEE Trans Aerosp Electron Syst AES–23(3):380–387. https://doi.org/10.1109/TAES.1987.310836

    Article  MathSciNet  Google Scholar 

  18. Hu Q, Li B, Zhang Y (2013) Robust attitude control design for spacecraft under assigned velocity and control constraints. ISA Trans 52(4):480–493. https://doi.org/10.1016/j.isatra.2013.03.003

    Article  Google Scholar 

  19. Schaub H, Akella MR, Junkins JL (2001) Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J Guid Control Dyn 24(1):95–100. https://doi.org/10.2514/2.4680

    Article  Google Scholar 

  20. Singla P, Singh T (2008) An adaptive attitude control formulation under angular velocity constraints. In: AIAA guidance, navigation and control conference and exhibit

  21. Singla P, Subbarao K, Junkins JL (2006) Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. J Guid Control Dyn 29(4):892–902. https://doi.org/10.2514/1.17498

    Article  Google Scholar 

  22. Lu K, Xia Y (2013) Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12):3591–3599. https://doi.org/10.1016/j.automatica.2013.09.001

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo Y, Song S (2014) Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix. Chin J Aeronaut 27(2):375–382. https://doi.org/10.1016/j.cja.2014.02.017

    Article  MathSciNet  Google Scholar 

  24. Seo D, Akella MR (2008) High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. J Guid Control Dyn 31(4):884–891. https://doi.org/10.2514/1.33308

    Article  Google Scholar 

  25. Maybeck PS (1999) Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems. Int J Robust Nonlinear Control 9(14):1051–1070. https://doi.org/10.1002/(SICI)1099-1239(19991215)9:14%3c1051::AID-RNC452%3e3.0.CO;2-0

    Article  Google Scholar 

  26. Narendra KS, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control 42(2):171–187. https://doi.org/10.1109/9.554398

    Article  MathSciNet  MATH  Google Scholar 

  27. Fekri S, Athans M, Pascoal A (2006) Issues, progress and new results in robust adaptive control. Int J Adapt Control Signal Process 20(10):519–579. https://doi.org/10.1002/acs.912

    Article  MathSciNet  MATH  Google Scholar 

  28. Hassani V, Hespanha JP, Athans M, Pascoal AM (2011) Stability analysis of robust multiple model adaptive control. IFAC Proc 44(1):350–355. https://doi.org/10.3182/20110828-6-IT-1002.01194

    Article  Google Scholar 

  29. Zhang W (2013) Stable weighted multiple model adaptive control: discrete-time stochastic plant. Int J Adapt Control Signal Process 27(7):562–581. https://doi.org/10.1002/acs.2328

    Article  MathSciNet  MATH  Google Scholar 

  30. Han Z, Narendra KS (2012) New concepts in adaptive control using multiple models. IEEE Trans Autom Control 57(1):78–89. https://doi.org/10.1109/TAC.2011.2152470

    Article  MathSciNet  MATH  Google Scholar 

  31. Ngo KB, Mahony R, Jiang ZP (2004) Integrator backstepping design for motion systems with velocity constraint. In: Control conference, 2004, 5th Asian, pp 141–146

  32. Lu Jianbo, Wie B (1994) Nonlinear quaternion feedback control for spacecraft via angular velocity shaping. In: Proceedings of 1994 American control conference—ACC ’94, vol 1, pp 632–636

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hosein Kazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrooei, A., Kazemi, M.H. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints. JASS 19, 153–163 (2018). https://doi.org/10.1007/s42405-018-0013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-018-0013-7

Keywords

Navigation