Skip to main content
Log in

Transition control of the Blasius boundary layer using passivity

  • Original Paper
  • Published:
Aerospace Systems Aims and scope Submit manuscript

Abstract

The control problem for linearised three-dimensional perturbations about a nominal laminar boundary layer over a flat plate (the Blasius profile) is considered. With a view to preventing the laminar to turbulent transition, appropriate inputs, outputs, and feedback controllers are synthesised that can be used to stabilise the system. The linearised Navier–Stokes equations are reduced to the Orr–Sommerfeld and Squire equations with wall-normal velocity actuation entering through the boundary conditions on the wall. An analysis of the work-energy balance is used to identify an appropriate sensor output that leads to a passive system for certain values of the streamwise and spanwise wavenumbers. Even when the system is unstable, it is demonstrated that strictly positive real feedback can stabilise this system using the special output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bagheri S, Brandt L, Henningson DS (2009) Input-output analysis, model reduction, and control of the flat-plate boundary layer. J Fluid Mech 620:263–298

    Article  MathSciNet  MATH  Google Scholar 

  2. Belson BA, Semeraro O, Rowley CW, Henningson DS (2013) Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators. Phys Fluids 25:054106

    Article  Google Scholar 

  3. Benhabib RJ, Iwens RP, Jackson RL (1981) Stability of large space structure control systems using positivity concepts. J Guidance Control 4:487–494

    Article  MathSciNet  MATH  Google Scholar 

  4. Bewley TR (2001) Flow control: new challenges for a new renaissance. Prog Aerosp Sci 37:21–58

    Article  Google Scholar 

  5. Bewley TR, Liu S (1998) Optimal and robust control and estimation of linear paths to transition. J Fluid Mech 365:305–349

    Article  MathSciNet  MATH  Google Scholar 

  6. Bridgeman LJ, Forbes JR (2014) Conic-sector-based control to circumvent passivity violations. Int J Control 87(8):1467–1477

    Article  MathSciNet  MATH  Google Scholar 

  7. Butler KM, Farrell BF (1992) Three-dimensional optimal perturbations in viscous shear flow. Phys Fluids A: Fluid Dyn 4(8):1637–1650

    Article  Google Scholar 

  8. Damaren CJ (2016) Laminar-turbulent transition control using passivity analysis of the Orr–Sommerfeld equation. J Guidance Control Dyn 39(7):1602–1613

    Article  Google Scholar 

  9. Desoer CA, Vidyasagar M (1975) Feedback systems: input-output properties. Academic Press, Cambridge

    MATH  Google Scholar 

  10. Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Heins PH, Jones BL, Sharma AS (2016) Passivity-based output-feedback control of turbulent channel flow. Automatica 69:348–355

    Article  MathSciNet  MATH  Google Scholar 

  12. Joshi SS, Speyer JL, Kim J (1997) A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane poiseuille flow. J Fluid Mech 332:157–184

    Article  MATH  Google Scholar 

  13. Kim J, Bewley TR (2007) A linear systems approach to flow control. Ann Rev Fluid Mech 39:383–417

    Article  MathSciNet  MATH  Google Scholar 

  14. Mamou M, Khalid M (2004) Finite element solution of the Orr–Sommerfeld equation using high precision hermite elements: plane poiseuille flow. Int J Numer Methods Fluids 44:721–735

    Article  MATH  Google Scholar 

  15. Safonov MG, Jonckheere EA, Verma M, Limebeer DJN (1987) Synthesis of positive real multivariable feedback systems. Int J Control 45(3):817–842

    Article  MathSciNet  MATH  Google Scholar 

  16. Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw-Hill, New York

    MATH  Google Scholar 

  17. Schmid PJ (2001) Stability and transition in shear flows. Springer, New York

    Book  MATH  Google Scholar 

  18. Sharma AS, Morrison JF, McKeon BJ, Limebeer DJN, Koberg WH, Kerwin SJ (2011) Relaminarisation of ReT = 100 globally stabilising linear feedback control. Phys Fluids 23:125105

    Article  Google Scholar 

  19. Vidyasagar M (1992) Nonlinear control systems, 2nd edn. Prentice-Hall Inc, Upper Saddle River

    MATH  Google Scholar 

  20. Zames G (1966) On the input-output stability of time-varying nonlinear feedback systems. Part I: conditions derived using concepts of loop gain, conicity, and positivity. IEEE Trans Autom Control 11(2):228–238

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Damaren.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Professor and Director, University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street. Associate Fellow AIAA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damaren, C.J. Transition control of the Blasius boundary layer using passivity. AS 2, 21–31 (2019). https://doi.org/10.1007/s42401-018-0021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42401-018-0021-0

Keywords

Navigation