Skip to main content
Log in

A review on kinematic analysis and dynamic stable control of space flexible manipulators

  • Review
  • Published:
Aerospace Systems Aims and scope Submit manuscript

Abstract

A review on state of the art of kinematic analysis and dynamic stable control of space flexible manipulators (SFMs) is presented. Specially, SFM as a significant assembled part of autonomous space robotics (ASRs) play an important role in precision-positioning and accurateness-controlling for space engineering application since this lightweight structure possesses a high-efficient payload-to-arm weight ratio. Further, the existing studies of kinematic analysis and dynamic stable control of SFMs are critically examined to ascertain the trends of research and to identify unsolved problems through comparing with different methods. Motivated by the current research results of the two aspects, some suggestions for future research are given concisely in our published literature: (1) a fast eliminate solution algorithm of forward kinematics is presented. (2) Two observer-based control methods are suggested after dynamic modeling of SFMs. (3) How to choose a suitable closed-loop strategy to describe system dynamic features is discussed in a comparison study of the two proposed observer-based control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(@ Copyright Science and Education Publishing)

Fig. 2

(@ Copyright 2012 IEEE)

Fig. 3

(@ Copyright 2009 AIAA)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aghili F (2010) Cartesian control of space manipulators for on-orbit servicing. In: Proceedings of AIAA guidance, navigation, and control conference (AIAA, GNCC), Toronto, Canada, pp 2–5

  2. Aguirrebeitia J, Angulo C, Macareno LM, Avilés R (2009) A metamodeling technique for variable geometry trusses design via equivalent parametric macroelements. ASME J Mech Design 131:104501

    Article  Google Scholar 

  3. Bai S, Hansen MR, Andersen TO (2009) Modelling of a special class of spherical parallel manipulators with Euler parameters. Robotica 27(2):161–170

    Article  Google Scholar 

  4. Bandyopadhyay S, Ghosal A (2006) Geometric characterization and parametric representation of the singularity manifold of a 6-6 Stewart platform manipulator. Mech Mach Theory 41:1377–1400

    Article  MathSciNet  MATH  Google Scholar 

  5. Baroon J, Ravani B (2010) Three-dimensional generalizations of Reuleaux’s and Instant center methods based on line geometry. ASME J Mech Robot 2:041011

    Article  Google Scholar 

  6. Ben-Horin P, Shoham M (2009) Application of Grassmann-Cayley algebra to geometrical interpretation of parallel robot singularities. Int J Robot Res 28(1):127–141

    Article  Google Scholar 

  7. Bilbao A, Avilés R, Aguirrebeitia J, Fernández de Bustos I (2009) Eigensensitivity based optimal damper location in variable geometry trusses. AIAA J 47(3):576–591

    Article  Google Scholar 

  8. Bilbao A, Avilés R, Aguirrebeitia J, Bustos IF (2011) Eigen sensitivity analysis in variable geometry trusses. AIAA J 49(7):1555–1558

    Article  Google Scholar 

  9. Briot S, Khalil W (2014) Recursive and symbolic calculation of the elastodynamic model of flexible parallel robots. Int J Robot Res 33(3):469–483

    Article  Google Scholar 

  10. Carricato M (2013) Direct Geometrico-Static problem of underconstrained Cable-driven parallel robots with three cables. ASME J Mech Robot 5:031008

    Article  Google Scholar 

  11. Chang JL (2012) Dynamic output feedback integral sliding mode control design for uncertain systems. Int J Robust and Nonlinear 22:841–857

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaoui H, Gueaieb W, Yagoub M, Sicard P (2006) Hybrid neural fuzzy sliding mode control of flexible-joint manipulators with unknown dynamics. In: Proceedings of IEEE conference on industrial electronics (IEC), pp 4082–4087

  13. Chen N, Song S (1994) Direct position analysis of the 4-6 Stewart platforms. ASME J Mech Design 116:61–66

    Article  Google Scholar 

  14. Chen C, Jackson D (2011) Parameterization and evaluation of robotic orientation workspace: a geometric treatment. IEEE Trans Robot 27(4):656–663

    Article  Google Scholar 

  15. Chiu CS (2012) Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica 48:316–326

    Article  MathSciNet  MATH  Google Scholar 

  16. Damaren CJ (1996) Adaptive control of flexible manipulators carrying large uncertain payloads. J Robotic Syst 13(4):219–228

    Article  MATH  Google Scholar 

  17. Dasgupta B, Mruthyunjaya TS (2000) The Stewart platform manipulator: a review. Mech Mach Theory 35:15–40

    Article  MathSciNet  MATH  Google Scholar 

  18. Debus TJ, Dougherty SP (2009) Overview and performance of the Front-end robotics enabling Near-term demonstration (FREND) robotic arm. In: Proceedings of AIAA Infotech Aerospace Online Conference (AIAA, IAOC), Reston, USA

  19. Ding HF, Huang Z (2007) A unique representation of the kinematic chain and the Atlas database. Mech Mach Theory 42(6):637–651

    Article  MATH  Google Scholar 

  20. Ding HF, Zhao J, Huang Z (2009) Unified topological representation models of planar kinematic chains. ASME J Mech Design 131:114503

    Article  Google Scholar 

  21. Eberharter JK, Ravani B (2006) Kinematic registration in 3D using the 2D Reuleaux method. ASME J Mech Design 128:349–355

    Article  Google Scholar 

  22. Friend R B (2008) Orbital express program summary and mission overview. In: Proceedings of SPIE defense and security symposium (SPIE, DSS), Orlando, pp 695–803

  23. Fu ZT, Yang WY, Yang Z (2013) Solution of inverse kinematics for 6R Robot manipulators with offset wrist based on geometric algebra. ASME J Mech Robot 5:031010

    Article  Google Scholar 

  24. Fukushima H, Satomura S, Kawai T, Tanaka M, Kamegawa T, Matsuno F (2012) Modeling and control of a snake-like robot using the screw-drive mechanism. IEEE Trans Robot 28(3):541–554

    Article  Google Scholar 

  25. Gadewadikar J, Lewis FL, Abu KM (2006) Necessary and sufficient conditions for H static output feedback control. J Guid Control Dyn 43:915–920

    Article  Google Scholar 

  26. Gallardo-Alvarado J, Ramírez-Agundis A, Rojas-Garduño H, Arroyo-Ramírez B (2010) Kinematics of an asymmetrical three-legged parallel manipulator by means of the screw theory. Mech Mach Theory 45:1013–1023

    Article  MATH  Google Scholar 

  27. Gosselin C, Angeles J (1990) Singularity analysis of closed-loop kinematic chains. IEEE Trans Robotic Autom 6(3):281–290

    Article  Google Scholar 

  28. Hesselroth AH, Hennessey MP (2014) Analytical evaluation of the double Stewart platform tensile truss stiffness matrix. ASME J Mech Robot 6:011003

    Article  Google Scholar 

  29. Hong MB, Choi YJ (2011) Formulation of unique form of Screw based Jacobian for lower mobility parallel manipulators. ASME J Mech Robot 3:011002

    Article  Google Scholar 

  30. Hu ZD, Hong JZ (1999) Dynamic modeling and analysis of a stiffness-to-flexibility structure. Appl Math Mech 20(10):1087–1093

    Article  MathSciNet  Google Scholar 

  31. Huang S, Natori MC, Miura K (1996) Motion control of free-floating variable geometry truss part 1: kinematics. J Guid Control Dynam 19(4):756–763

    Article  MATH  Google Scholar 

  32. Huang S, Natori MC, Miura K (1996) Motion control of free-floating variable geometry truss part 2: inverse kinematics. J Guid Control Dynam 19(4):764–771

    Article  MATH  Google Scholar 

  33. Huang XG, Liao QZ, Wei SM (2010) Closed-form forward kinematics for a symmetrical 6-6 Stewart platform using algebraic elimination. Mech Mach Theory 45:327–334

    Article  MATH  Google Scholar 

  34. Huang T, Liu HT, Chetwynd DG (2011) Generalized Jacobian analysis of lower mobility manipulators. Mech Mach Theory 46:831–844

    Article  MATH  Google Scholar 

  35. Innocenti C, Parenti-Catelli V (1989) Direct position analysis of the Stewart platform mechanism. Mech Mach Theory 26(6):611–621

    Article  Google Scholar 

  36. Innocenti C (1995) Direct kinematics in analytical form of the 6-4 fully-parallel mechanism. ASME J Mech Design 117:89–95

    Article  Google Scholar 

  37. Jafari F, McInroy JE (2003) Orthogonal Gough-Stewart platforms for micromanipulation. IEEE Trans Robot Autom 19(4):595–603

    Article  Google Scholar 

  38. Jain S, Kramer SN (1990) Forward and inverse kinematic solution of variable geometry truss robot based on Ncelled tetrahedron truss. ASME J Mech Design 112(1):16–22

    Article  Google Scholar 

  39. Jing ZL, Qiao LF, Pan H, Yang YS, Chen WJ (2017) An overview of the configuration and manipulation of soft robotics for on-orbit servicing. Sci China Inf Sci 60:050201

    Article  Google Scholar 

  40. Kakogawa A, Ma S (2010) Mobility of an in-pipe robot with screw drive mechanism inside curved pipes. In: Proceedings of IEEE international conference on robotics and biomimetics (RBC), pp 1530–1535

  41. Kamegawa T, Yamasaki T, Igarashi H, Matsuno F (2004) Development of the snake-like rescue robot KOHGA. In: Proceedings of IEEE international conference on robotics and automation (RAC), pp. 5081-5086

  42. Kiang CT, Spowage A, Yoong CK (2015) Review of control and sensor system of flexible manipulator. J Intell Robot Syst 77:187–213

    Article  Google Scholar 

  43. Kim SM, Wang S, Brennan MJ (2011) Comparison of negative and positive position feedback control of a flexible structure. Smart Mater Struct 20(1):015011

    Article  Google Scholar 

  44. Kim HJ, Kim BK (2014) Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots. IEEE Trans Ind Electron 61(9):4771–4779

    Article  Google Scholar 

  45. Kong X, Gosselin CM (2001) Forward displacement analysis of Third-class analytic 3-RPR parallel manipulators. Mech Mach Theory 36(9):1009–1018

    Article  MATH  Google Scholar 

  46. Kong X, Gosselin C M (2008) Forward displacement analysis of a quadratic 3T1R parallel manipulator: the 4-DOF quadrupteron. In: Proceedings of the second international workshop on fundamental issues and future research directions for parallel mechanisms and manipulators (FIFRD-PMM), Montpellier, France, pp 31–39

  47. Kong X, Gosselin CM (2010) A formula that produces a unique solution to the forward displacement analysis of a quadratic spherical parallel manipulator: the agile eye. ASME J Mech Robot 2:044051

    Article  Google Scholar 

  48. Lan ZH, Du R (2008) Representation of topological changes in metamorphic mechanisms with matrices of the same dimension. ASME J Mech Design 130(7):074501

    Article  Google Scholar 

  49. Larouche BP, Zhu GZH (2013) Investigation of impedance controller for autonomous on-orbit servicing robot. Can Aeronaut Space J 59:15–24

    Article  Google Scholar 

  50. Lee S, Bejczy AK (1991) A redundant arm kinematic control based on parameterization. In: Proceedings of IEEE international conference on robotics and automation (RAC), Sacramento, USA, pp 458–465

  51. Liu H, Huang T, Chetwynd DG (2011) A general approach for geometric error modeling of lower mobility parallel manipulators. ASME J Mech Robot 3:021013

    Article  Google Scholar 

  52. Lin HT, Leisk GG, Trimmer BA (2013) Soft robots in space: a perspective for soft robotics. Acta Futura 6:69–79

    Google Scholar 

  53. Long A, Richards M, Hastings DE (2007) On-orbit servicing: a new value proposition for satellite design and operation. J Spacecraft Rockets 44:964–976

    Article  Google Scholar 

  54. Maciejewski AA, Klein CA (1985) Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int J Robot Res 4(3):109–117

    Article  Google Scholar 

  55. Miura K, Furuya H (1988) Adaptive structure concept for future space applications. AIM J 26(8):995–1002

    Google Scholar 

  56. Osuka K, Kitajima H (2003) Development of mobile inspection robot for rescue activities: MOIRA. In Proceedings of IEEE/RSJ International conference on intelligent robotics and systems (IRSC), pp 3373–3377

  57. Page A, de Rosario H, Mata V, Atienza C (2009) Experimental analysis of rigid body motion: a vector method to determine finite and infinitestimal displacements from point coordinates. ASME J Mech Design 131:031005

    Article  Google Scholar 

  58. Prada E, Gmiterko A, Lipták T, Miková Ľ, Menda F (2013) Kinematic analysis of planar Snake-like robot mechanism using of matrices formulation. Am J Mech Eng 1(7):447–450

    Google Scholar 

  59. Qiao S, Liao Q, Wei S, Su HJ (2010) Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions. Mech Mach Theory 45(2):193–199

    Article  MATH  Google Scholar 

  60. Raghavan M, Roth B (1993) Inverse kinematics of the general 6R manipulator and related linkages. ASME J Mech Design 115(3):502–508

    Article  Google Scholar 

  61. Rigatos GG (2009) Model-based and model-free control of flexible-link robots: a comparison between representative methods. Appl Math Model 33:3906–3925

    Article  MathSciNet  MATH  Google Scholar 

  62. Rodriguez H, Astolfi A, Onega R (2004) On the construction of static stabilizers and static output trackers for dynamically linearizable systems related results and applications. In: Proceedings of IEEE conference on decision and control (DCC)

  63. Rojas N, Thomas F (2013) Application of distance geometry to tracing coupler curves of Pin-jointed linkages. ASME J Mech Robot 5:021001

    Article  Google Scholar 

  64. Sallaberger C, Force SPT, Agency CS (1997) Canadian space robotic activities. Acta Astronaut 41:239–246

    Article  Google Scholar 

  65. Simo JC, Quoc VL (1987) The role of nonlinear theories in transient dynamic analysis of flexible structures. J Sound Vib 119(3):487–508

    Article  MathSciNet  MATH  Google Scholar 

  66. Sun FC, Wu FG, Liu HP (2008) Research prospect on faced to on-orbit servicing remote-manipulation technologies. Syst Control Technol Appl 34(1):33–37

    Google Scholar 

  67. Takayama T, Hirose S (2001) Development of ‘Souryu I&II’—connected crawler vehicle for inspection of narrow and winding space. ASME J Robot Mech 15(1):61–69

    Article  Google Scholar 

  68. Ulrich S, Sasiadek JZ, Barkana I (2013) Nonlinear adaptive output feedback control of Flexible-joint space robot manipulators. In: Proceedings of AIAA guidance, navigation, and control conference (GNCC), AIAA Paper 2013-4523-CP

  69. Vogtmann DE, Gupta SK, Bergbreiter S (2013) Characterization and modeling of elastomeric joints in miniature compliant mechanisms. ASME J Mech Robot 5:041017

    Article  Google Scholar 

  70. Waldron KJ, Hunt KH (1991) Series-parallel dualities in actively coordinated mechanisms. Int J Robot Res 10(5):473–480

    Article  Google Scholar 

  71. Wang ZD, Zeng HQ, Ho DWC, Unbehauen H (2002) Multiobjective control of a four-link flexible manipulator: a robust H approach. IEEE Trans Control Syst Technol 10(6):866–875

    Article  Google Scholar 

  72. Williams II R L (1994) Kinematic modeling of a double octahedral variable geometry truss (VGT) as an Extensible Gimbal. NASA Technical Memorandum, p 109127

  73. Wu DL, Li HY, Peng WB (2002) The stability analysis of large space extensible structures on space station. Acta Astronaut 23(6):98–102

    Google Scholar 

  74. Wu HN, Shi P (2010) Adaptive variable structure state estimation for uncertain systems with persistently bounded disturbances. Int J Robust Nonlin 20:2003–2015

    Article  MathSciNet  MATH  Google Scholar 

  75. Xu WF, Liang B, Cheng L, Xu YS (2009) Autonomous target capturing of free-floating space robot: theory and experiments. Robotica 27(3):425–445

    Article  Google Scholar 

  76. Xu WF, Liang B, Cheng L, Xu YS (2010) Autonomous rendezvous and robotic capturing of non-cooperative target in space. Robotica 28(5):705–718

    Article  Google Scholar 

  77. Xu QM, Yang YS, Jing ZL, Hu SQ (2017) Forward kinematics analysis for a class of asymmetrical parallel manipulators. Int J Adv Robot Syst 14(1):1–12

    Article  Google Scholar 

  78. Xu QM, Jing ZL, Hu SQ (2018) Stability analysis of nonlinear dynamic system with linear observer for a multilink flexible manipulator. Int J Non-Linear Mech 103:27–36

    Article  Google Scholar 

  79. Yahya S, Moghavvemi M, Mohamed HAF (2011) Geometrical approach of planar hyper-redundant manipulators: inverse kinematics, path planning and workspace. Simul Model Pract Theory 19:406–422

    Article  Google Scholar 

  80. Yamaguchi T, Kagawa Y, Hayashi I, Iwatsuki N, Morikawa K, Nakamura K (1999) Screw principle microrobot passing steps in a small pipe. In: Proceedings of international symposium micromechatronics human sciences (SMHS), pp 149–152

  81. Yan SZ (2004) Advanced in nonlinear dynamic problems on structural gaps for spacecraft. J Dyn Control Syst 2(2):48–52

    MathSciNet  Google Scholar 

  82. Zeinali M, Notash L (2010) Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mech Mach Theory 45:80–90

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang L, Wang D, Dai JS (2008) Biological modeling and evolution based synthesis of metamorphic mechanisms. ASME J Mech Design 130(7):072303

    Article  Google Scholar 

  84. Zhang XD, Sun HX, Jia QX (2008) The research on control strategy of space flexible robots. Dissertation Paper, Beijing University of Posts and Telecommunications

  85. Zhao JS, Chu FL, Feng ZJ (2014) Kinematics of spatial parallel manipulators with tetrahedron coordinates. IEEE Trans Robot 30(1):233–243

    Article  Google Scholar 

  86. Zlatanov D, Fenton RG, Benhabib B (1998) Identification and classification of the singular configurations of mechanisms. Mech Mach Theory 33(6):743–760

    Article  MathSciNet  MATH  Google Scholar 

  87. Zsombor-Murray PJ, Hyder A (1992) Design, mobility analysis and animation of a double equilateral tetrahedral mechanism. Robot Auton Syst 9:227–236

    Article  Google Scholar 

  88. Zsombor-Murray PJ, Gfrerrer A (2010) A unified approach to direct kinematics of some reduced motion parallel manipulators. ASME J Mech Robot 2:021006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 61673262 and 61175028) and Shanghai key project of basic research (Grant no. 16JC1401100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongliang Jing or Qimin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Z., Xu, Q. & Huang, J. A review on kinematic analysis and dynamic stable control of space flexible manipulators. AS 2, 1–14 (2019). https://doi.org/10.1007/s42401-018-00024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42401-018-00024-4

Keywords

Navigation