Skip to main content
Log in

Non-Invasive Brain-Computer Interfaces: a New Perspective on the Assessment and Classification of Individuals with Methamphetamine Addiction

  • Review
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Methamphetamine addiction is a brain disease that causes abnormalities in the structure and function of the brain. EEG, a common signal acquired based on the noninvasive brain-computer interface, can reflect the altered brain activity associated with methamphetamine addiction. EEG-based analysis methods provide a perspective to explore the neural mechanisms of methamphetamine addiction and the effects on brain activity. This paper reports the results of a review of EEG-based assessment and classification of methamphetamine addiction. Current methods commonly used in EEG-based methamphetamine addiction research include traditional resting-state EEG analysis, brain network analysis, and analysis of event-related potentials. A small number of studies have classified methamphetamine addiction and healthy individuals based on resting state EEG features or event-related potentials. EEG is one of the common tools used to examine the effects of methamphetamine on brain function. In follow-up studies, new methods for analyzing resting-state EEG and event-related potentials may help to investigate the neural mechanisms of methamphetamine addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Leshner AI. Addiction is a brain disease, and it matters. Science. 1997;278(5335):45–7.

    Article  CAS  PubMed  Google Scholar 

  2. Lindsey KP, Gatley SJ, Volkow ND. Neuroimaging in drug abuse. Curr Psychiatry Rep. 2003;5(5):355–61.

    Article  PubMed  Google Scholar 

  3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision. Washington, DC: American Psychiatric Association; 2022.

    Book  Google Scholar 

  4. Rawson RA, Condon TP. Why do we need an Addiction supplement focused on methamphetamine? Addiction. 2007;1:1–4.

    Article  Google Scholar 

  5. Sabrini S, Wang GY, Lin JC, Ian JK, Curley LE. Methamphetamine use and cognitive function: a systematic review of neuroimaging research. Drug Alcohol Depend. 2019;194:75–87.

    Article  CAS  PubMed  Google Scholar 

  6. Baker A, et al. Brief cognitive behavioural interventions for regular amphetamine users: a step in the right direction. Addiction. 2005;100(3):367–78.

    Article  PubMed  Google Scholar 

  7. Elkashef A, Vocci F, Hanson G, White J, Wickes W, Tiihonen J. Pharmacotherapy of methamphetamine addiction: an update. Subst Abus. 2008;29(3):31–49.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rawson RA, Marinelli-Casey P, Anglin MD, Dickow A, et al. Amulti-site comparison of psychosocial approaches for the treatment ofmethamphetamine dependence. Addiction. 2004;99:708–17.

    Article  PubMed  Google Scholar 

  9. Shoptaw S, et al. Randomized, placebo-controlled trial of bupropion for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2008;96(3):222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zorick T, Sugar CA, Hellemann G, Shoptaw S, London ED. Poor response to sertraline in methamphetamine dependence is associated with sustained craving for methamphetamine. Drug Alcohol Depend. 2011;118(2–3):500–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darke S, Darke S, Kaye S, Darke S, et al. Major physical andpsychological harms of methamphetamine use. Drug and Alcohol Review. 2008;27(3):253–62.

    Article  PubMed  Google Scholar 

  12. Kaye S, McKetin R, Duflou J, Darke S. Methamphetamine and cardiovascular pathology: a review of the evidence. Addiction. 2007;102(8):1204–11.

    Article  PubMed  Google Scholar 

  13. Yeo KK, et al. The association of methamphetamine use and cardiomyopathy in young patients. Am J Med. 2007;120(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  14. Varner KJ, Ogden BA, Delcarpio J, Meleg-Smith S. Cardiovascular responses elicited by the “binge” administration of methamphetamine. J Pharmacol Exp Ther. 2002;301(1):152–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wijetunga M, Seto T, Lindsay J, Schatz I. Crystal methamphetamine〢associated cardiomyopathy: tip of the iceberg? Clin Toxicol. 2003;41(7):981–6.

    CAS  Google Scholar 

  16. McKetin R, Lubman DI, Najman JM, Dawe S, Butterworth P, Baker AL. Does methamphetamine use increase violent behaviour? Evidence from a prospective longitudinal study. Addiction. 2014;109(5):798–806.

    Article  PubMed  Google Scholar 

  17. Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study. Neurology. 2000;54(6):1344–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lineberry TW, Bostwick JM. Methamphetamine Abuse: A Perfect Stormof Complications. Mayo Clinic Proceedings. 2006;81(1):77–84.

    Article  PubMed  Google Scholar 

  19. Mohamad B, Sangchooli A, Ebrahimpoor M, Najafi M, et al. Temporal dynamics of the neural response to drug cues: an fMRI study among methamphetamine users. Basic Clin Neurosci. 2021;1–31.

  20. Nestor LJ, Ghahremani DG, Monterosso J, London ED. Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Res. 2011;194(3):287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction. 2007;102(Suppl 1):16–32.

    Article  PubMed  Google Scholar 

  22. Cho AK, Melega WP. Patterns of methamphetamine abuse and their consequences. J Addict Dis. 2001;21(1):21–34.

    Article  Google Scholar 

  23. Anderson AJ, Perone S. Developmental change in the resting state electroencephalogram: Insights into cognition and the brain. Brain Cogn. 2018;126:40–52.

    Article  PubMed  Google Scholar 

  24. Babiloni C, et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol. 2016;103:88–102.

    Article  PubMed  Google Scholar 

  25. Newton TF, et al. Quantitative EEG abnormalities in recently abstinent methamphetamine dependent individuals. Clin Neurophysiol. 2003;114(3):410–5.

    Article  PubMed  Google Scholar 

  26. Newton TF, Kalechstein AD, Hardy DJ, Cook IA, et al. Association betweenquantitative EEG and neurocognition in methamphetamine-dependent volunteers. Clin Neurophysiol. 2004;115(1):194–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kalechstein AD, De la Garza R, Newton TF, Green MF, Cook IA, Leuchter AF. Quantitative EEG abnormalities are associated with memory impairment in recently abstinent methamphetamine-dependent individuals. J Neuropsych Clin Neurosci. 2009;21(3):254–8.

    Article  Google Scholar 

  28. Zhao D, et al. Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder. Mol Psychiatry. 2021;26(11):6198–208.

    Article  CAS  PubMed  Google Scholar 

  29. Sabesan S, Narayanan K, Prasad A, Iasemidis LD, et al. Information Flow in Coupled Nonlinear Systems: Application to the Epileptic Human Brain. In: Pardalos PM, Boginski VL, Vazacopoulos A, editors. Data Mining in Biomedicine. (Springer US); 2007. p. 483–503.

    Chapter  Google Scholar 

  30. Yun K, Park HK, Kwon DH, Cho SN, Jeong J. Decreased complexity of the EEG in patients with methamphetamine dependence. World Cong Med Phys Biomed Eng. 2006;14(1–6):997.

    Google Scholar 

  31. Yun K, et al. Decreased cortical complexity in methamphetamine abusers. Psychiatry Res. 2012;201(3):226–32.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmadlou M, Ahmadi K, Rezazade M, Azad-Marzabadi E. Global organization of functional brain connectivity in methamphetamine abusers. Clin Neurophysiol. 2013;124(6):1122–31.

    Article  PubMed  Google Scholar 

  33. Khajehpour H, et al. Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG. Cogn Neurodyn. 2019;13(6):519–30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Khajehpour H, Makkiabadi B, Ekhtiari H, Bakht S, et al. Disrupted resting-state brainfunctional network in methamphetamine abusers: A brain source space study by EEG. PLOS ONE. 2019;14(12):e0226249.

  35. Chen T, et al. Disrupted brain network dynamics and cognitive functions in methamphetamine use disorder: insights from EEG microstates. BMC Psychiatry. 2020;20(1):334.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shafiee-Kandjani AR, Jahan A, Moghadam-Salimi M, Fakhari A, et al. Resting-state electroencephalographic coherence in recently abstinent methamphetamine users. Int J High Risk Behav Addict. 2020;9(4):1–6.

    Google Scholar 

  37. Minnerly C, Shokry IM, To W, Callanan JJ, Tao R. Characteristic changes in EEG spectral powers of patients with opioid-use disorder as compared with those with methamphetamine- and alcohol-use disorders. PLoS ONE. 2021;16(9):e0248794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen CC, et al. Neuronal abnormalities induced by an intelligent virtual reality system for methamphetamine use disorder. IEEE J Biomed Health Inform. 2022;26(7):3458–65.

    Article  PubMed  Google Scholar 

  39. Khajehpour H, et al. Effects of transcranial direct current stimulation on attentional bias to methamphetamine cues and its association with EEG-derived functional brain network topology. Int J Neuropsychopharmacol. 2022;25(8):631–44.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin Q, Li D, Hu C, Shen Z, Wang Y. Altered EEG microstates dynamics during cue-induced methamphetamine craving in virtual reality environments. Front Psychiatry. 2022;13:891719.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang D, Zhou C, Chang YK. Acute exercise ameliorates craving and inhibitory deficits in methamphetamine: An ERP study. Physiol Behav. 2015;147:38–46.

    Article  CAS  PubMed  Google Scholar 

  42. Haifeng J, et al. P300 event-related potential in abstinent methamphetamine-dependent patients. Physiol Behav. 2015;149:142–8.

    Article  PubMed  Google Scholar 

  43. Wang D, Zhou C, Zhao M, Wu X, Chang YK. Dose-response relationships between exercise intensity, cravings, and inhibitory control in methamphetamine dependence: an ERPs study. Drug Alcohol Depend. 2016;161:331–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wang DS, Zhu T, Zhou CL, Chang YK. Aerobic exercise training ameliorates craving and inhibitory control in methamphetamine dependencies: a randomized controlled trial and event-related potential study. Psychol Sport Exerc. 2017;30:82–90.

    Article  CAS  Google Scholar 

  45. Wei S, et al. Enhanced neural responses to monetary rewards in methamphetamine use disordered individuals compared to healthy controls. Physiol Behav. 2018;195:118–27.

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Stock A-K, Rädle M, Beste C. Methamphetamine-associateddifficulties in cognitive control allocation may normalize after prolongedabstinence. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2019;88:41–52.

    Article  CAS  PubMed  Google Scholar 

  47. Xiong Y, Gao J, Zhang J. Detection methamphetamine patients using ERP features. In: 2019 6th International Conference on Information Science and Control Engineering (ICISCE). Shanghai, China; 2019. p. 259–62.

  48. Zhong N, et al. Smaller Feedback-related negativity (FRN) reflects the risky decision-making deficits of methamphetamine dependent individuals. Front Psychiatry. 2020;11:320.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen T, et al. Modulation of methamphetamine-related attention bias by intermittent theta-burst stimulation on left dorsolateral prefrontal cortex. Front Cell Dev Biol. 2021;9:667476.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao Q, Lu YZ, Zhou CL, Wang XC. Effects of chronic exercise on attentional bias among individuals with methamphetamine use disorder. Psychol Sport Exerc. 2021;52:101842.

    Article  Google Scholar 

  51. Li X, Zhou Y, Zhang G, Lu Y, Zhou C, Wang H. Behavioral and brain reactivity associated with drug-related and non-drug-related emotional stimuli in methamphetamine addicts. Front Hum Neurosci. 2022;16:894911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Franken IH. Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(4):563–79.

    Article  PubMed  Google Scholar 

  53. Wang Y, Ruhe G. The cognitive process of decision making. Int J Cogn Inf Nat Intell. 2007;1(2):73–85.

    Article  Google Scholar 

  54. Verdejo-Garcia A, Chong TT, Stout JC, Yucel M, London ED. Stages of dysfunctional decision-making in addiction. Pharmacol Biochem Behav. 2018;164:99–105.

    Article  CAS  PubMed  Google Scholar 

  55. Bechara A. Risky business: emotion, decision-making, and addiction. J Gambl Stud. 2003;19(1):23–51.

    Article  PubMed  Google Scholar 

  56. Droutman V, et al. Neurocognitive decision-making processes of casual methamphetamine users. Neuroimage Clin. 2019;21:101643.

    Article  PubMed  Google Scholar 

  57. Dominguez-Salas S, Diaz-Batanero C, Lozano-Rojas OM, Verdejo-Garcia A. Impact of general cognition and executive function deficits on addiction treatment outcomes: systematic review and discussion of neurocognitive pathways. Neurosci Biobehav Rev. 2016;71:772–801.

    Article  PubMed  Google Scholar 

  58. Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005;75(6):406–33.

    Article  CAS  PubMed  Google Scholar 

  59. Tanovic E, Joormann J. Anticipating the unknown: the stimulus-preceding negativity is enhanced by uncertain threat. Int J Psychophysiol. 2019;139:68–73.

    Article  PubMed  Google Scholar 

  60. Hackley SA, Valle-Inclán F, Masaki H, Hebert K. Chapter 17 - Stimulus-Preceding Negativity (SPN) and Attention to Rewards. In: Mangun GR, editor. Cognitive Electrophysiology of Attention (Academic Press). 2014. p. 216–25.

  61. Ilieva IP, Hook CJ, Farah MJ. Prescription stimulants’ effects on healthy inhibitory control, working memory, and episodic memory: a meta-analysis. J Cogn Neurosci. 2015;27(6):1069–89.

    Article  PubMed  Google Scholar 

  62. Tolliver BK, et al. Impaired cognitive performance in subjects with methamphetamine dependence during exposure to neutral versus methamphetamine-related cues. Am J Drug Alcohol Abuse. 2012;38(3):251–9.

    Article  PubMed  Google Scholar 

  63. Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 2008;45(1):152–70.

    Article  PubMed  Google Scholar 

  64. Sokhadze E, Stewart C, Hollifield M, Tasman A. Event-related potential study of executive dysfunctions in a speeded reaction task in cocaine addiction. J Neurother. 2008;12(4):185–204.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Torres A, et al. Emotional and non-emotional pathways to impulsive behavior and addiction. Front Hum Neurosci Original Res. 2013;7:43.

    Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China, grant no. 61904038 and no. U1913216; National Key R&D Program of China, grant no. 2021YFC0122702 and no. 2018YFC2002300; Shanghai Sailing Program, grant no. 19YF1403600 and no. 22YF1404200; Shanghai Municipal Science and Technology Commission, grant no. 19441907600, no.19441908200, and no. 19511132000; Opening Project of Zhejiang Lab, grant no. 2021MC0AB01; Fudan University-CIOMP Joint Fund, grant no.FC2019-002; Opening Project of Shanghai Robot R&D and Transformation Functional Platform, grant no. KEH2310024; Ji Hua Laboratory, grant no. X190021TB190 and no. X190021TB193; National Natural Integration Project, grant no. 91948302; Shanghai Municipal Science and Technology Major Project, grant no. 2021SHZDZX0103 and no. 2018SHZDZX01.

Author information

Authors and Affiliations

Authors

Contributions

HJ, LZ, and XK contributed to the study conception and design. GZ, HS, PW, and JW collaborated on literature research and collation. The first draft of the manuscript was written by GZ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoyang Kang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, G., Su, H., Wang, P. et al. Non-Invasive Brain-Computer Interfaces: a New Perspective on the Assessment and Classification of Individuals with Methamphetamine Addiction. SN Compr. Clin. Med. 5, 240 (2023). https://doi.org/10.1007/s42399-023-01585-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42399-023-01585-y

Keywords

Navigation