Chronic Primary Pain of the Spine: an Integrative Perspective Part 1

Abstract

The aim of this study is to conduct a narrative review of the literature emphasizing current models of non-specific low back and neck pain with an emphasis on chronic and disabling pain. We include its risk factors, etiology, pathophysiology, and differential diagnosis. Emphasis is also placed on variables of chronification and the persistence of this type of pain. Our secondary aim was to provide foundational knowledge before advancing the discussion to a proposal of evidence-based management strategies for patients suffering from chronic primary spine pain in a subsequent follow-up article. A review of the English medical literature was performed using search terms “chronic low back pain” OR “chronic neck pain” AND “primary,” “differential diagnosis,” “pathophysiology,” “functional imaging” and “risk factors.” Additional searches were made using Google Scholar and PubMed search engines through January 17, 2020. A total of 112 articles were used. Acute and chronic spine pain differ significantly in risk factors, pathophysiology, prevalence, and differential diagnosis. Chronic spinal pain is multifactorial in nature, and that proposed causes of chronicity and pain-related disability span the entire spectrum of the biopsychosocial domain. Chronic low back and neck pain poses a significant global threat of disabling and burdensome quality of life. Because pain is a complex multifactorial integrative experience, the scientific literature reports an abundance of multidimensional risk factors associated with the persistence of pain beyond normal healing times. Understanding the nature of chronic primary spinal pain will provide clinicians with necessary and valuable insights for patient care along the complex and variable spectrum of the biopsychosocial approach.

This is a preview of subscription content, access via your institution.

Data availability

Not applicable.

Materials availability

Not applicable

Abbreviations

DALYs:

disability-adjusted life years

IASP:

International Association for the Study of Pain

ICD-11:

International Classification of Disease 11th Edition

QST:

quantitative sensory testing

cLBP:

chronic low back pain

PTSD:

post-traumatic stress disorder

PHQ-9:

patient health questionnaire-9

SES:

socioeconomic status

BMI:

body mass index

HPA:

hypothalamic-pituitary-adrenal

PET:

positron emission tomography

MRI:

magnetic resonance imaging

TSPO:

translocator protein 18 kDa

LTP:

long-term potentiation

LTD:

long-term depression

DMN:

default mode network

mPFC:

medial prefrontal cortex

PAG-RVM:

periaqueductal gray-rostral ventromedial medulla

dACC:

dorsal anterior cingulate cortex

NAcc:

nucleus accumbens

References

  1. 1.

    Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1211–1259.

  2. 2.

    Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73:968–74.

    PubMed  Google Scholar 

  3. 3.

    Hay SI, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1260–344.

    Google Scholar 

  4. 4.

    Goldberg DS, McGee SJ. Pain as a global public health priority. BMC Public Health. 2011;11:770.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Briggs AM, Woolf AD, Dreinhöfer K, Homb N, Hoy DG, Kopansky-Giles D, et al. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 2018;96:366–8.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Engel GL. The need for a new medical model: a challenge for biomedicine. Science. 1977;196:129–36.

  7. 7.

    Vlaeyen JWS, Maher CG, Wiech K, Van Zundert J, Meloto CB, Diatchenko L, et al. Low back pain. Nat Rev Dis Primers. 2018;4:52.

    PubMed  Google Scholar 

  8. 8.

    Koes BW, van Tulder M, Lin C-WC, Macedo LG, McAuley J, Maher C. An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. Eur Spine J. 2010;19:2075–94.

  9. 9.

    Koes BW, van Tulder MW, Thomas S. Diagnosis and treatment of low back pain. BMJ. 2006;332:1430–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet. 2017;389:736–47.

  11. 11.

    Deyo RA, Weinstein JN. Low back pain. N Engl J Med. 2001;344:363–70.

    CAS  PubMed  Google Scholar 

  12. 12.

    Street KJ, White SG, Vandal AC. Clinical prevalence and population incidence of serious pathologies among patients undergoing magnetic resonance imaging for low back pain. Spine J. 2019. https://doi.org/10.1016/j.spinee.2019.09.002.

  13. 13.

    Treede R-D, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. A classification of chronic pain for ICD-11. Pain. 2015;156:1003–7.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hancock MJ, Maher CG, Latimer J, Spindler MF, McAuley JH, Laslett M, et al. Systematic review of tests to identify the disc, SIJ or facet joint as the source of low back pain. Eur Spine J. 2007;16:1539–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    den Bandt HL, Paulis WD, Beckwée D, Ickmans K, Nijs J, Voogt L. Pain mechanisms in low back pain: a systematic review with meta-analysis of mechanical quantitative sensory testing outcomes in people with nonspecific low back pain. J Orthop Sports Phys Ther. 2019;49:698–715.

    Google Scholar 

  16. 16.

    Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2009;60:214–25.

    CAS  PubMed  Google Scholar 

  17. 17.

    Diatchenko L, Fillingim RB, Smith SB, Maixner W. The phenotypic and genetic signatures of common musculoskeletal pain conditions. Nat Rev Rheumatol. 2013;9:340–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jacobsen LM, Schistad EI, Storesund A, Pedersen LM, Rygh LJ, Røe C, et al. The COMT rs4680 Met allele contributes to long-lasting low back pain, sciatica and disability after lumbar disc herniation: COMT rs4680, pain and disability. EJP. 2012;16:1064–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Omair A, Mannion AF, Holden M, Fairbank J, Lie BA, Hägg O, et al. Catechol-O-methyltransferase (COMT) gene polymorphisms are associated with baseline disability but not long-term treatment outcome in patients with chronic low back pain. Eur Spine J. 2015;24:2425–31.

    PubMed  Google Scholar 

  20. 20.

    Crofford LJ. Chronic pain: where the body meets the brain. Trans Am Clin Climatol Assoc. 2015;126:167–83.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–9.

    CAS  PubMed  Google Scholar 

  22. 22.

    Battié MC, Videman T, Levalahti E, Gill K, Kaprio J. Heritability of low back pain and the role of disc degeneration. Pain. 2007;131:272–80.

    PubMed  Google Scholar 

  23. 23.

    Kraatari M, Skarp S, Niinimäki J, Karppinen J, Männikkö M. A Whole exome study identifies novel candidate genes for vertebral bone marrow signal changes (Modic Changes). Spine 2017;42:1201–1206.

  24. 24.

    Junqueira DRG, Ferreira ML, Refshauge K, Maher CG, Hopper JL, Hancock M, et al. Heritability and lifestyle factors in chronic low back pain: results of the Australian twin low back pain study (The AUTBACK study). Eur J Pain. 2014;18:1410–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    Hestbaek L, Iachine IA, Leboeuf-Yde C, Kyvik KO, Manniche C. Heredity of low back pain in a young population: a classical twin study. Twin Res. 2004;7:16–26.

    PubMed  Google Scholar 

  26. 26.

    El-Metwally A, Mikkelsson M, Ståhl M, Macfarlane GJ, Jones GT, Pulkkinen L, et al. Genetic and environmental influences on non-specific low back pain in children: a twin study. Eur Spine J. 2008;17:502–8.

  27. 27.

    Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140:774–815.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ader R, Cohen N, Felten D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345:99–103.

    CAS  PubMed  Google Scholar 

  30. 30.

    Hung C-I, Liu C-Y, Fu T-S. Depression: an important factor associated with disability among patients with chronic low back pain. Int J Psychiatry Med. 2015;49:187–98.

    PubMed  Google Scholar 

  31. 31.

    Hall AM, Kamper SJ, Maher CG, Latimer J, Ferreira ML, Nicholas MK. Symptoms of depression and stress mediate the effect of pain on disability. Pain. 2011;152:1044–51.

    PubMed  Google Scholar 

  32. 32.

    Baumeister H, Knecht A, Hutter N. Direct and indirect costs in persons with chronic back pain and comorbid mental disorders--a systematic review. J Psychosom Res. 2012;73:79–85.

    PubMed  Google Scholar 

  33. 33.

    Ilgen MA, Kleinberg F, Ignacio RV, Bohnert ASB, Valenstein M, McCarthy JF, et al. Noncancer pain conditions and risk of suicide. JAMA Psychiatry. 2013;70:692–7.

    PubMed  Google Scholar 

  34. 34.

    Hassett AL, Aquino JK, Ilgen MA. The risk of suicide mortality in chronic pain patients. Curr Pain Headache Rep. 2014;18:436.

    PubMed  Google Scholar 

  35. 35.

    Ferreira-Valente A, Sharma S, Torres S, Smothers Z, Pais-Ribeiro J, Abbott JH, et al. Does religiosity/spirituality play a role in function, pain-related beliefs, and coping in patients with chronic pain? A systematic review. J Relig Health. 2019. https://doi.org/10.1007/s10943-019-00914-7.

  36. 36.

    Lin F-H, Yih DN, Shih F-M, Chu C-M. Effect of social support and health education on depression scale scores of chronic stroke patients. Medicine. 2019;98:e17667.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Edwards RR, Dworkin RH, Sullivan MD, Turk DC, Wasan AD. The role of psychosocial processes in the development and maintenance of chronic pain. J Pain. 2016;17:T70–92.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Burke NN, Finn DP, McGuire BE, Roche M. Psychological stress in early life as a predisposing factor for the development of chronic pain: clinical and preclinical evidence and neurobiological mechanisms. J Neurosci Res. 2017;95:1257–70.

    CAS  PubMed  Google Scholar 

  39. 39.

    Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med. 2003;163:2433–45.

    PubMed  Google Scholar 

  40. 40.

    Åkerblom S, Perrin S, Rivano Fischer M, McCracken LM. The impact of PTSD on functioning in patients seeking treatment for chronic pain and validation of the posttraumatic diagnostic scale. Int J Behav Med. 2017;24:249–59.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Nicholas MK, Linton SJ, Watson PJ, Main CJ, “Decade of the Flags” Working Group. Early identification and management of psychological risk factors (“yellow flags”) in patients with low back pain: a reappraisal. Phys Ther 2011;91:737–753.

  42. 42.

    Pinheiro MB, Ferreira ML, Refshauge K, Maher CG, Ordoñana JR, Andrade TB, et al. Symptoms of depression as a prognostic factor for low back pain: a systematic review. Spine J. 2016;16:105–16.

    PubMed  Google Scholar 

  43. 43.

    Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97.

    PubMed  Google Scholar 

  44. 44.

    Romano JM, Turner JA. Chronic pain and depression: does the evidence support a relationship. Psychol Bull. 1985;97:18–34.

    CAS  PubMed  Google Scholar 

  45. 45.

    Roy R, Thomas M, Matas M. Chronic pain and depression: a review. Compr Psychiatry. 1984;25:96–105.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kroenke K, Spitzer RL. The PHQ-9: a new depression diagnostic and severity measure. Psychiatr Ann. 2002;32:509–15.

    Google Scholar 

  47. 47.

    Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Meints SM, Edwards RR. Evaluating psychosocial contributions to chronic pain outcomes. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:168–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Vlaeyen JW, Linton SJ. Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. Pain. 2000;85:317–32.

    PubMed  Google Scholar 

  50. 50.

    Darnall BD. Psychological treatment for patients with chronic pain. American Psychological Association; 2019.

  51. 51.

    Manaï M, van Middendorp H, Veldhuijzen DS, Huizinga TWJ, Evers AWM. How to prevent, minimize, or extinguish nocebo effects in pain: a narrative review on mechanisms, predictors, and interventions. Pain Rep. 2019;4:e699.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Corsi N, Colloca L. Placebo and nocebo effects: the advantage of measuring expectations and psychological factors. Front Psychol. 2017;8:308.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Goubert L, Crombez G, De Bourdeaudhuij I. Low back pain, disability and back pain myths in a community sample: prevalence and interrelationship. Eur J Pain. 2004;8:385–94.

    PubMed  Google Scholar 

  54. 54.

    Dionne CE, Von Korff M, Koepsell TD, Deyo RA, Barlow WE, Checkoway H. Formal education and back pain: a review. J Epidemiol Community Health. 2001;55:455–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Rubin DI. Epidemiology and risk factors for spine pain. Neurol Clin. 2007;25:353–71.

    PubMed  Google Scholar 

  56. 56.

    WHO Healthy Cities Project. Social determinants of health: . World Health Organization; 2003.

  57. 57.

    Paeratakul S, Lovejoy JC, Ryan DH, Bray GA. The relation of gender, race and socioeconomic status to obesity and obesity comorbidities in a sample of US adults. Int J Obes Relat Metab Disord. 2002;26:1205–10.

    CAS  PubMed  Google Scholar 

  58. 58.

    Okifuji A, Hare BD. The association between chronic pain and obesity. J Pain Res. 2015;8:399–408.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Ray L, Lipton RB, Zimmerman ME, Katz MJ, Derby CA. Mechanisms of association between obesity and chronic pain in the elderly. Pain. 2011;152:53–9.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Parreira P, Maher CG, Steffens D, Hancock MJ, Ferreira ML. Risk factors for low back pain and sciatica: an umbrella review. Spine J. 2018;18:1715–21.

    PubMed  Google Scholar 

  61. 61.

    Swain CTV, Pan F, Owen PJ, Schmidt H, Belavy DL. No consensus on causality of spine postures or physical exposure and low back pain: a systematic review of systematic reviews. J Biomech. 2019;109312.

  62. 62.

    Hagen KB, Holte HH, Tambs K, Bjerkedal T. Socioeconomic factors and disability retirement from back pain: a 1983-1993 population-based prospective study in Norway. Spine. 2000;25:2480–7.

    CAS  PubMed  Google Scholar 

  63. 63.

    Singh-Manoux A, Adler NE, Marmot MG. Subjective social status: its determinants and its association with measures of ill-health in the Whitehall II study. Soc Sci Med. 2003;56:1321–33.

    PubMed  Google Scholar 

  64. 64.

    Pickett KE, Wilkinson RG. Income inequality and health: a causal review. Soc Sci Med. 2015;128:316–26.

    PubMed  Google Scholar 

  65. 65.

    Adler NE, Ostrove JM. Socioeconomic status and health: what we know and what we don’t. Ann N Y Acad Sci. 1999;896:3–15.

    CAS  PubMed  Google Scholar 

  66. 66.

    Sapolsky RM. Social status and health in humans and other animals. Annu Rev Anthropol. 2004;33:393–418.

    Google Scholar 

  67. 67.

    Henschke N, Lorenz E, Pokora R, Michaleff ZA, Quartey JNA, Oliveira VC. Understanding cultural influences on back pain and back pain research. Best Pract Res Clin Rheumatol. 2016;30:1037–49.

    PubMed  Google Scholar 

  68. 68.

    Abenhaim L, Rossignol M, Gobeille D, Bonvalot Y, Fines P, Scott S. The prognostic consequences in the making of the initial medical diagnosis of work-related back injuries. Spine. 1995;20:791–5.

    CAS  PubMed  Google Scholar 

  69. 69.

    Barsky AJ. The iatrogenic potential of the physician’s words. JAMA. 2017;318:2425–6.

    PubMed  Google Scholar 

  70. 70.

    Smith MT, Haythornthwaite JA. How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep Med Rev. 2004;8:119–32.

    PubMed  Google Scholar 

  71. 71.

    Irwin MR. Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol. 2019;19:702–15.

    CAS  PubMed  Google Scholar 

  72. 72.

    Smith MT, Perlis ML, Haythornthwaite JA. Suicidal ideation in outpatients with chronic musculoskeletal pain: an exploratory study of the role of sleep onset insomnia and pain intensity. Clin J Pain. 2004;20:111.

    PubMed  Google Scholar 

  73. 73.

    Finan PH, Goodin BR, Smith MT. The association of sleep and pain: an update and a path forward. J Pain. 2013;14:1539–52.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Tang NKY, Wright KJ, Salkovskis PM. Prevalence and correlates of clinical insomnia co-occurring with chronic back pain. J Sleep Res. 2007;16:85–95.

    PubMed  Google Scholar 

  75. 75.

    Kang D, McAuley JH, Kassem MS, Gatt JM, Gustin SM. What does the grey matter decrease in the medial prefrontal cortex reflect in people with chronic pain. Eur J Pain. 2019;23:203–19.

    PubMed  Google Scholar 

  76. 76.

    Albrecht DS, Ahmed SU, Kettner NW, Borra RJH, Cohen-Adad J, Deng H, et al. Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain. 2018;159:968–77.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Bäckryd E, Tanum L, Lind A-L, Larsson A, Gordh T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J Pain Res. 2017;10:515–25.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Adlan AM, Lip GYH, Paton JFR, Kitas GD, Fisher JP. Autonomic function and rheumatoid arthritis—a systematic review. Semin Arthritis Rheum. 2014;44:283–304.

    PubMed  Google Scholar 

  79. 79.

    Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, et al. Evidence for brain glial activation in chronic pain patients. Brain. 2015;138:604–15.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Klyne DM, Barbe MF, van den Hoorn W, Hodges PW. ISSLS PRIZE IN CLINICAL SCIENCE 2018: longitudinal analysis of inflammatory, psychological, and sleep-related factors following an acute low back pain episode-the good, the bad, and the ugly. Eur Spine J 2018;27:763–777.

  81. 81.

    Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31:464–8.

    CAS  PubMed  Google Scholar 

  82. 82.

    Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, et al. Do corticosteroids damage the brain? J Neuroendocrinol. 2006;18:393–411.

    CAS  PubMed  Google Scholar 

  83. 83.

    Capitanio JP, Cole SW. Social instability and immunity in rhesus monkeys: the role of the sympathetic nervous system. Philos Trans R Soc Lond B Biol Sci. 2015;370. https://doi.org/10.1098/rstb.2014.0104.

  84. 84.

    Dantzer R, Cohen S, Russo SJ, Dinan TG. Resilience and immunity. Brain Behav Immun. 2018;74:28–42.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Marsland AL, Bachen EA, Cohen S, Rabin B, Manuck SB. Stress, immune reactivity and susceptibility to infectious disease. Physiol Behav. 2002;77:711–6.

    CAS  PubMed  Google Scholar 

  87. 87.

    Herbert TB, Cohen S. Stress and immunity in humans: a meta-analytic review. Psychosom Med. 1993;55:364–79.

    CAS  PubMed  Google Scholar 

  88. 88.

    Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Sharif K, Watad A, Coplan L, Lichtbroun B, Krosser A, Lichtbroun M, et al. The role of stress in the mosaic of autoimmunity: an overlooked association. Autoimmun Rev. 2018;17:967–83.

    CAS  PubMed  Google Scholar 

  90. 90.

    Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289:3095–105.

    PubMed  Google Scholar 

  92. 92.

    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895–926.

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41.

    CAS  PubMed  Google Scholar 

  94. 94.

    Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2017;18:113.

    CAS  PubMed  Google Scholar 

  95. 95.

    Greenwald JD, Shafritz KM. An integrative neuroscience framework for the treatment of chronic pain: from cellular alterations to behavior. Front Integr Neurosci. 2018;12:18.

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Martucci KT, Mackey SC. Neuroimaging of pain: human evidence and clinical relevance of central nervous system processes and modulation. Anesthesiology. 2018;128:1241–54.

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Giustino TF, Maren S. Noradrenergic modulation of fear conditioning and extinction. Front Behav Neurosci. 2018;12:43.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Ottestad E, Angst MS. Chapter 14 - Nociceptive Physiology. In: Hemmings HC, Egan TD, editors. Pharmacology and Physiology for Anesthesia, Philadelphia: W.B. Saunders; 2013, p. 235–252.

  99. 99.

    Hashmi JA, Baliki MN, Huang L, Baria AT, Torbey S, Hermann KM, et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain. 2013;136:2751–68.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Porreca F, Navratilova E. Reward, motivation, and emotion of pain and its relief. Pain. 2017;158(Suppl 1):S43–9.

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 2010;66:149–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    McCabe C. Neural signals of “intensity” but not “wanting” or “liking” of rewards may be trait markers for depression. J Psychopharmacol. 2016;30:1020–7.

    PubMed  Google Scholar 

  103. 103.

    Schreiter S, Spengler S, Willert A, Mohnke S, Herold D, Erk S, et al. Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder. Psychol Med. 2016;46:3187–98.

    CAS  PubMed  Google Scholar 

  104. 104.

    Apkarian AV, Baliki MN, Farmer MA. Predicting transition to chronic pain. Curr Opin Neurol. 2013;26:360–7.

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci. 2012;15:1117–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Eisenberger NI, Lieberman MD, Williams KD. Does rejection hurt? An FMRI study of social exclusion. Science. 2003;302:290–2.

    CAS  PubMed  Google Scholar 

  107. 107.

    Ng SK, Urquhart DM, Fitzgerald PB, Cicuttini FM, Hussain SM, Fitzgibbon BM. The relationship between structural and functional brain changes and altered emotion and cognition in chronic low back pain brain changes. Clin J Pain. 2018;34:237–61.

    PubMed  Google Scholar 

  108. 108.

    Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31:7540–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis & Rheumatism. 2010;62:2930–40.

    Google Scholar 

  110. 110.

    Obermann M, Nebel K, Schumann C, Holle D, Gizewski ER, Maschke M, et al. Gray matter changes related to chronic posttraumatic headache. Neurology. 2009;73:978–83.

    PubMed  Google Scholar 

  111. 111.

    Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci. 2009;29:13746–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Atlas LY, Wager TD. How expectations shape pain. Neurosci Lett. 2012;520:140–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Alec J. Domjan, DC for participation during early concept development. Patrick J. Battaglia, DC for concept development and manuscript revision.

Author information

Affiliations

Authors

Contributions

NWK was a major contributor in concept development. TJW, CLB, NAH, and NWK performed the literature search, analyzed results, drafted, revised, and approved the final manuscript. TJW was a major contributor in writing the manuscript.

Corresponding author

Correspondence to Timothy J. Williamson.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williamson, T.J., Bolles, C.L., Hedges, N.A. et al. Chronic Primary Pain of the Spine: an Integrative Perspective Part 1. SN Compr. Clin. Med. 3, 461–472 (2021). https://doi.org/10.1007/s42399-021-00772-z

Download citation

Keywords

  • Chronic pain
  • Spine
  • Low back pain
  • Neck pain
  • Risk factors
  • Pathophysiology