Skip to main content

Advertisement

Log in

Gut Microbiota as a Potential Treatment Target in Patient with Chronic Heart Failure

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Chronic heart failure (CHF) is a pandemic with a high mortality rate and a high economic burden. The complexity of heart failure clinical syndromes requires approaches through different therapeutic targets. Intestinal dysbiosis is a condition in the human intestinal tract characterized by an imbalance of bacteria, causing various adverse effects. It has been linked with more than 20 diseases and clinical syndromes, including chronic heart failure. The composition of intestinal microbiota is influenced by structural and functional changes of the intestine, which happens in patients with CHF, through a complex network of cytokines, metabolic products, and numerous regulatory molecules. This condition provides exciting new fields for searching for a novel treatment for chronic heart failure. Several interventions, including diet, probiotic, prebiotic, antibiotic, even fecal microbial transplant, have previously been studied. This article discusses the reciprocal relationship between the heart and the gut microbiota through various changes in the gut microbiota composition, intestinal dysfunction, and altered bacterial metabolites and the potential therapies for modulating gut microbiota composition as a target of therapy for CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not Applicable

Abbreviations

CHF:

Chronic heart failure

IBD:

Inflammatory bowel disease

IBS:

Irritable bowel syndrome

IL-10:

Interleukin 10

IFN-Y:

Interferon gamma

IL-17:

Interleukin 17

IL-22:

Interleukin 22

LPS:

Lipopolysaccharides

TNF-α:

Tumor necrosis factor-α

LPS:

Lipopolysaccharides

TMAO:

Trimethylamine-N-oxide

SCFA:

Short-chain fatty acids

NT-proBNP:

N terminal pro brain natriuretic peptide

eGFR:

Estimated glomerular filtration rate

NYHA:

New York Heart Association

TMA:

Trimethylamine

FMO-3:

Flavin mono oxygenase-3

Gpr43:

G protein-coupled receptor 43

Th1:

T helper 1

Th17:

T helper 17

MI:

Myocardial infarction

Olfr78:

Olfactory receptors 78

Gpr41:

G protein-coupled receptor 41

BAs:

Bile acids

LC:

Lithocholic acid

GLC:

Glycine conjugated lithocholic acid

TLC:

Taurine conjugated lithocholic acid

GUDCA:

Glycine conjugated ursodeoxycholic acid

DCA:

Deoxycholic acid

UDCA:

Ursodeoxycholic acid

MAPK:

Mitogen-activated protein kinase

AMPK/UCP:

AMP-activated protein kinase/uncoupling protein 2

DASH:

Dietary approach to stop hypertension

AHA/ACC:

American Heart Association/American College of Cardiology

WHI:

Women Health Initiatives

6 MWT:

6-minute walking test

HFpEF:

Heart failure with preserved ejection fraction

MACE:

Major adverse cardiovascular events

ISAPP:

The International Scientific Association for Probiotics and Prebiotics

FAO/WHO:

Food and Agriculture Organization of the United Nations/World Health Organizations

GABA:

γ-Aminobutyric acid

SHR:

Spontaneously hypertensive rats

PSPY:

Purple sweet potato yogurt

MSP-1:

Major secreted protein-1

IGF1R:

Insulin-growth factor I receptor

Treg :

Regulatory T cells

EF:

Ejection fractions

RCTs:

Randomized controlled trials

FDA:

Food and Drug Administration

GRAS:

Generally recognized as safe

SDD:

Selective decontamination of digestive tract

GNB:

Gram-negative Bacillus

FMT:

Fecal microbial transplantation

References

  1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Google Scholar 

  2. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):7–11.

    PubMed  PubMed Central  Google Scholar 

  3. Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, et al. Heart failure: preventing disease and death worldwide: addressing heart failure. ESC Heart Fail. 2014;1(1):4–25.

    PubMed  Google Scholar 

  4. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8(1):30–41.

    PubMed  Google Scholar 

  5. Kitai T, Kirsop J, Tang WHW. Exploring the microbiome in heart failure. Curr Heart Fail Rep. 2016;13(2):103–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3):e0174099.

    PubMed  PubMed Central  Google Scholar 

  7. Cao Y, Shen J, Ran ZH. Association between faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol Res Pract. 2014. https://doi.org/10.1155/2014/872725.

  8. Scott KP, Antoine J-M, Midtvedt T, van Hemert S. Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis. 2015;26:25877. https://doi.org/10.3402/mehd.v26.25877>.

  9. Lau K, Srivatsav V, Rizwan A, Nashed A, Liu R, Shen R, et al. Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients. 2017;9(8). https://doi.org/10.3390/nu9080859.

  10. Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell. 2010;1(8):718–25.

    PubMed  PubMed Central  Google Scholar 

  11. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.

    CAS  PubMed  Google Scholar 

  13. Zabell A, Tang WHW. Targeting the microbiome in heart failure. Curr Treat Options Cardiovasc Med. 2017;19(4). https://doi.org/10.1007/s11936-017-0528-4.

  14. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–38.

    PubMed  PubMed Central  Google Scholar 

  15. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, et al. Pathogenic gut Flora in patients with chronic heart failure. JACC Heart Fail. 2016;4(3):220–7.

    PubMed  Google Scholar 

  17. Luedde M, Winkler T, Heinsen F, Rühlemann MC, Spehlmann ME, Bajrovic A, et al. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017;4(3):282–90.

    PubMed  PubMed Central  Google Scholar 

  18. Kummen M, Mayerhofer CCK, Vestad B, Broch K, Awoyemi A, Storm-Larsen C, et al. Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol. 2018;71(10):1184–6.

    PubMed  Google Scholar 

  19. Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. Bando Y, editor. PLoS One. 2017;12(3):e0174099.

    PubMed  PubMed Central  Google Scholar 

  20. Cui X, Ye L, Li J, Jin L, Wang W, Li S, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018;8(1):635.

    PubMed  PubMed Central  Google Scholar 

  21. Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, et al. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.01226.

  22. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9.

    CAS  PubMed  Google Scholar 

  23. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.

    CAS  PubMed  Google Scholar 

  24. Kamo T, Akazawa H, Suzuki J, Komuro I. Novel concept of a heart-gut axis in the pathophysiology of heart failure. Korean Circ J. 2017;47(5):663–9.

    PubMed  PubMed Central  Google Scholar 

  25. Sandek A, Rauchhaus M, Anker SD, von Haehling S. The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care. 2008;11(5):632–9.

    PubMed  Google Scholar 

  26. Sandek A, Bjarnason I, Volk H-D, Crane R, Meddings JB, Niebauer J, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012;157(1):80–5.

    PubMed  Google Scholar 

  27. Ebner N, Földes G, Schomburg L, Renko K, Springer J, Jankowska EA, et al. Lipopolysaccharide responsiveness is an independent predictor of death in patients with chronic heart failure. J Mol Cell Cardiol. 2015;87:48–53.

    CAS  PubMed  Google Scholar 

  28. Niebauer J, Volk H-D, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353(9167):1838–42.

    CAS  PubMed  Google Scholar 

  29. Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota–mucosal interface. PNAS. 2011;108(Supplement 1):4607–14.

    CAS  PubMed  Google Scholar 

  30. Wilson Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015;21(2):91–6.

    Google Scholar 

  31. Tang WHW, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.

    CAS  PubMed  Google Scholar 

  32. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Serino M, Blasco-Baque V, Nicolas S, Burcelin R. Far from the eyes, close to the heart: dysbiosis of gut microbiota and cardiovascular consequences. Curr Cardiol Rep. 2014;16(11). https://doi.org/10.1007/s11886-014-0540-1.

  34. Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277(6):717–26.

    PubMed  Google Scholar 

  35. Landfald B, Valeur J, Berstad A, Raa J. Microbial trimethylamine-N-oxide as a disease marker: something fishy? Microb Ecol Health Dis. 2017;28(1). https://doi.org/10.1080/16512235.2017.1327309

  36. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017;61(1):n/a.

    CAS  Google Scholar 

  37. Galli C, Risé P. Fish consumption, omega 3 fatty acids and cardiovascular disease. The science and the clinical trials. Nutr Health. 2009;20(1):11–20.

    CAS  PubMed  Google Scholar 

  38. Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel). 2016;8(11). https://doi.org/10.3390/toxins8110326

  39. Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–9.

    PubMed  Google Scholar 

  40. Nicolucci AC, Reimer RA. Prebiotics as a modulator of gut microbiota in paediatric obesity: prebiotics in paediatric obesity. Pediatr Obes. 2017;12(4):265–73.

    CAS  PubMed  Google Scholar 

  41. Guarner F. Studies with inulin-type fructans on intestinal infections, permeability, and inflammation. J Nutr. 2007;137(11):2568S–71S.

    CAS  PubMed  Google Scholar 

  42. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64.

    CAS  PubMed  Google Scholar 

  43. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016;164:144–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang TWH, Chen H-C, Chen C-Y, Yen CYT, Lin C-J, Prajnamitra RP, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation. 2019;139(5):647–59.

    CAS  PubMed  Google Scholar 

  46. Marques FZ, Nelson E, Chu P-Y, Horlock D, Fiedler A, Ziemann M, et al. High-Fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–77.

    CAS  PubMed  Google Scholar 

  47. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. PNAS. 2013;110(11):4410–5.

    CAS  PubMed  Google Scholar 

  48. de Aguiar Vallim TQ, Edwards PA. Bile acids have the gall to function as hormones. Cell Metab. 2009;10(3):162–4.

    Google Scholar 

  49. Chiang JYL. Bile acids: regulation of synthesis. J Lipid Res. 2009;50(10):1955–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP, et al. Increased secondary/primary bile acid ratio in chronic heart failure. J Card Fail. 2017;23(9):666–71.

    CAS  PubMed  Google Scholar 

  51. Joubert P. An in vivo investigation of the negative chronotropic effect of cholic acid in the rat. Clin Exp Pharmacol Physiol. 1978;5(1):1–8.

    CAS  PubMed  Google Scholar 

  52. Binah O, Rubinstein I, Bomzon A, Better OS. Effects of bile acids on ventricular muscle contraction and electrophysiological properties: studies in rat papillary muscle and isolated ventricular myocytes. Naunyn Schmiedeberg's Arch Pharmacol. 1987;335(2). https://doi.org/10.1007/BF00177718.

  53. von Haehling S, Schefold JC, Jankowska EA, Springer J, Vazir A, Kalra PR, et al. Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial. J Am Coll Cardiol. 2012;59(6):585–92.

    Google Scholar 

  54. Lekawanvijit S, Adrahtas A, Kelly DJ, Kompa AR, Wang BH, Krum H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J. 2010;31(14):1771–9.

    CAS  PubMed  Google Scholar 

  55. Yang K, Xu X, Nie L, Xiao T, Guan X, He T, et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol Lett. 2015;234(2):110–9.

    CAS  PubMed  Google Scholar 

  56. Yang K, Wang C, Nie L, Zhao X, Gu J, Guan X, et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. JASN. 2015;26(10):2434–46.

    CAS  PubMed  Google Scholar 

  57. Rifai L, Pisano C, Hayden J, Sulo S, Silver MA. Impact of the DASH diet on endothelial function, exercise capacity, and quality of life in patients with heart failure. Proc (Baylor Univ Med Cent). 2015;28(2):151–6.

    Google Scholar 

  58. Miró Ò, Estruch R, Martín-Sánchez FJ, Gil V, Jacob J, Herrero-Puente P, et al. Adherence to Mediterranean diet and all-cause mortality after an episode of acute heart failure: results of the MEDIT-AHF study. JACC Heart Fail. 2018;6(1):52–62.

    PubMed  Google Scholar 

  59. Lin P-P, Hsieh Y-M, Kuo W-W, Lin Y-M, Yeh Y-L, Lin C-C, et al. Probiotic-fermented purple sweet potato yogurt activates compensatory IGF-IR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats. Int J Mol Med. 2013;32(6):1319–28.

    CAS  PubMed  Google Scholar 

  60. Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491–9.

    PubMed  Google Scholar 

  62. Ettinger G, Burton JP, Gloor GB, Reid G. Lactobacillus rhamnosus GR-1 attenuates induction of hypertrophy in cardiomyocytes but not through secreted protein MSP-1 (p75). PLoS One. 2017;12(1):e0168622.

    PubMed  PubMed Central  Google Scholar 

  63. Wang H-F, Lin P-P, Chen C-H, Yeh Y-L, Huang C-C, Huang C-Y, et al. Effects of lactic acid bacteria on cardiac apoptosis are mediated by activation of the phosphatidylinositol-3 kinase/AKT survival-signalling pathway in rats fed a high-fat diet. Int J Mol Med. 2015;35(2):460–70.

    CAS  PubMed  Google Scholar 

  64. Danilo CA, Constantopoulos E, McKee LA, Chen H, Regan JA, Lipovka Y, et al. Bifidobacterium animalis subsp. lactis 420 mitigates the pathological impact of myocardial infarction in the mouse. Benefic Microbes. 2017;8(2):257–69.

    CAS  Google Scholar 

  65. Costanza AC, Moscavitch SD, Faria Neto HCC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348–50.

    PubMed  Google Scholar 

  66. Beserra BTS, Fernandes R, do Rosario VA, Mocellin MC, Kuntz MGF, Trindade EBSM. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr. 2015;34(5):845–58.

    CAS  PubMed  Google Scholar 

  67. Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111(07):1147–61.

    CAS  PubMed  Google Scholar 

  68. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62(8):1112–21.

    CAS  PubMed  Google Scholar 

  69. Delzenne NM, Cani PD, Daubioul C, Neyrinck AM. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr. 2005;93(S1):S157–61.

    CAS  PubMed  Google Scholar 

  70. Fernandes R, do Rosario VA, Mocellin MC, Kuntz MGF, Trindade EBSM. Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: a systematic review. Clin Nutr. 2017;36(5):1197–206.

    CAS  PubMed  Google Scholar 

  71. Barengolts E. Gut MICROBIOTA, prebiotics, probiotics, and synbiotics in management of obesity and prediabetes: review of randomized controlled trials. Endocr Pract. 2016;22(10):1224–34.

    PubMed  Google Scholar 

  72. Conraads VM, Jorens PG, Ieven MM, Bosmans JM, Schuerwegh A, Bridts CH, et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur. J. Heart Fail. 2004;9. https://doi.org/10.1016/j.ejheart.2003.12.004.

  73. Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6 . https://doi.org/10.1186/s40168-018-0441-4.

  74. Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321(2):156–64.

    PubMed  PubMed Central  Google Scholar 

  75. Suskind DL, Brittnacher MJ, Wahbeh G, Shaffer ML, Hayden HS, Qin X, et al. Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s disease. Inflamm Bowel Dis. 2015;21(3):556–63.

    PubMed  PubMed Central  Google Scholar 

  76. Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108(4):500–8.

    PubMed  Google Scholar 

  77. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149(1):102–109.e6.

    PubMed  Google Scholar 

  78. Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther. 2012;36(6):503–16.

    CAS  PubMed  Google Scholar 

  79. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    PubMed  Google Scholar 

  80. Levitan EB, Wolk A, Mittleman MA. Consistency with the DASH diet and incidence of heart failure. Arch Intern Med. 2009;169(9):851–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Salehi-Abargouei A, Maghsoudi Z, Shirani F, Azadbakht L. Effects of dietary approaches to stop hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases—incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition. 2013;29(4):611–8.

    PubMed  Google Scholar 

  82. Levitan EB, Wolk A, Mittleman MA. Relation of consistency with the dietary approaches to stop hypertension diet and incidence of heart failure in men aged 45 to 79 years. Am J Cardiol. 2009;104(10):1416–20.

    PubMed  PubMed Central  Google Scholar 

  83. Levitan EB, Lewis CE, Tinker LF, Eaton CB, Ahmed A, Manson JE, et al. Mediterranean and DASH diet scores and mortality in women with heart failure: the Women’s health initiative. Circ Heart Fail. 2013;6(6):1116–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hummel SL, Mitchell SE, Brook Robert D, Kolias Theodore J, Sheth Samar S, Rosenblum Hannah R, et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60(5):1200–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, et al. Low-sodium DASH diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive HFPEF. Hypertension. 2012;60(5):1200–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mathew AV, Seymour EM, Byun J, Pennathur S, Hummel SL. Altered metabolic profile with sodium-restricted dietary approaches to stop hypertension diet in hypertensive heart failure with preserved ejection fraction. J Card Fail. 2015;21(12):963–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.

    CAS  PubMed  Google Scholar 

  88. Papadaki A, Martínez-González MÁ, Alonso-Gómez A, Rekondo J, Salas-Salvadó J, Corella D, et al. Mediterranean diet and risk of heart failure: results from the PREDIMED randomized controlled trial. Eur J Heart Fail. 2017;19(9):1179–85.

    CAS  PubMed  Google Scholar 

  89. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502.

    PubMed  Google Scholar 

  90. Dimidi E, Christodoulides S, Fragkos KC, Scott SM, Whelan K. The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100(4):1075–84.

    CAS  PubMed  Google Scholar 

  91. Dani C, Coviello CC, Corsini II, Arena F, Antonelli A, Rossolini GM. Lactobacillus sepsis and probiotic therapy in newborns: two new cases and literature review. AJP Rep. 2016;6(1):e25–9.

    PubMed  Google Scholar 

  92. Pruccoli G, Silvestro E, Napoleone CP, Aidala E, Garazzino S, Scolfaro C. Are probiotics safe? Bifidobacterium bacteremia in a child with severe heart failure. Infez Med. 2019;27(2):175–178.

  93. Kelly G. Inulin-Type Prebiotics – A Review: Part 1. Alternative Medicine Review. 2008;13(4):315–329.

  94. Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012:32(5):701–11. https://doi.org/10.1111/j.1478-3231.2011.02730.x.

  95. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114(7):999–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Guarino MPL, Altomare A, Barera S, Locato V, Cocca S, Franchin C, et al. Effect of inulin on proteome changes induced by pathogenic lipopolysaccharide in human colon. PLoS One. 2017;12(1):e0169481.

    PubMed  PubMed Central  Google Scholar 

  97. Anderson JL, Muhlestein JB. Antibiotic trials for coronary heart disease. Tex Heart Inst J. 2004;31(1):33–8.

    PubMed  PubMed Central  Google Scholar 

  98. Grayston JT. Antibiotic treatment of atherosclerotic cardiovascular disease. Circulation. 2003;107(9):1228–30.

    PubMed  Google Scholar 

  99. Wells BJ, Mainous AG, Dickerson LM. Antibiotics for the secondary prevention of ischemic heart disease: a meta-analysis of randomized controlled trials. Arch Intern Med. 2004;164(19):2156–61.

    PubMed  Google Scholar 

  100. Ponziani FR, Zocco MA, D’Aversa F, Pompili M, Gasbarrini A. Eubiotic properties of rifaximin: disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017;23(25):4491–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. DeFilipp Z, Bloom PP, Torres Soto M, Mansour MK, Sater MRA, Huntley MH, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–50.

    PubMed  Google Scholar 

  102. Dailey FE, Turse EP, Daglilar E, Tahan V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr Opin Pharmacol. 2019;49:29–33.

    CAS  PubMed  Google Scholar 

  103. Mayerhofer CCK, Awoyemi AO, Moscavitch SD, Lappegård KT, Hov JR, Aukrust P, et al. Design of the GutHeart-targeting gut microbiota to treat heart failure-trial: a phase II, randomized clinical trial: GutHeart design. ESC Heart Fail. 2018;5(5):977–84.

    PubMed  PubMed Central  Google Scholar 

  104. Probiotics and inflammatory status in patients with heart failure - tabular view - ClinicalTrials.gov [Internet]. [cited 2020 Jun 17]. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03968549

  105. The role of gut microbiota in heart failure and pre-heart failure with preserved ejection fraction - tabular view - ClinicalTrials.gov [Internet]. [cited 2020 Jun 17]. Available from: https://clinicaltrials.gov/ct2/show/record/NCT02728154

  106. Ezekowitz J. The need for FibEr Addition in SympTomatic Heart Failure [Internet]. clinicaltrials.gov; 2019. [cited 2020 Jun 15]. Report No.: NCT03409926. Available from: https://clinicaltrials.gov/ct2/show/NCT03409926

Download references

Acknowledgements

The authors are grateful to Quinta Febryani Handoyono, MD for her assistance on figure design

Author information

Authors and Affiliations

Authors

Contributions

JH, IC, and HFHG contributed to conception and design, literature research, and drafting the manuscript. JH also provides revision of the manuscript. LPS contributed in revision of the manuscript, supervision, and final approval of the manuscript. All authors apporoved the final manuscript

Corresponding author

Correspondence to Joshua Henrina.

Ethics declarations

Competing interests

The authors declare that they have no competing interests

Ethical approval and consent to participate

Not Applicable

Consent for Publication

Not Applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henrina, J., Cahyadi, I., Hadi Gunawan, H.F. et al. Gut Microbiota as a Potential Treatment Target in Patient with Chronic Heart Failure. SN Compr. Clin. Med. 2, 1614–1627 (2020). https://doi.org/10.1007/s42399-020-00436-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-020-00436-4

Keywords

Navigation