Skip to main content

Advertisement

Log in

Prevention of Recurrences in Dupuytren’s Contracture: Are We in the Right Side?

  • Surgery
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Dupuytren contracture is a fibroproliferative disorder affecting the palm of the hand causing a sustained flexion of the fingers due to fibrous cord contracture. Collagenase clostridium histolyticum, as pharmacological treatment, achieves the selective degradation of a portion of the cord, thus enabling the affected finger’s functionality. Our hypothesis is based on a literary review looking for associations based on collagenase for the treatment of the Dupuytren’s disease. Current treatment options for Dupuytren’s are symptomatic and aim at removing part of the affected tissue to restore hand functionality. Recurrence remains the greatest challenge for achieving long-term successful treatment. The association of a hydrogel with the collagenase increases the action time of the latter. The association to a collagenase-hydrogel complex with a third drug (anti-TGFß) acting at the unstructured extracellular matrix in the proliferative phase of the response of wound healing that takes place after the administration of collagenase for direct action on the transformation of fibroblast into myofibroblast, thus resembling as far as possible the actions drugs have on cell cultures. However, in Dupuytren’s contracture, the breakage and degradation of the cord that occur with current treatment make this increase in local action time unnecessary. Combining actual treatment options in Dupuytren’s disease with a hydrogel acting as a vehicle can provide an alternative to destroy the extracellular matrix and act directly against the myofibroblast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alfonso-Rodríguez C-A, Garzón I, Garrido-Gómez J, Oliveira ACX, Martín-Piedra MÁ, Scionti G, et al. Identification of histological patterns in clinically affected and unaffected palm regions in Dupuytren’s disease. PLoS One. 2014;9:e112457.

    Article  Google Scholar 

  2. Dias JJ, Singh HP, Ullah A, Bhowal B, Thompson JR. Patterns of recontracture after surgical correction of Dupuytren disease. J Hand Surg. 2013;38:1987–93.

    Article  Google Scholar 

  3. Dupuytren Foundation Archives ~ Dupuytren Foundation, https://dupuytrens.org/category/dupuytren-foundation/. Accessed 31 Jan 2017.

  4. Hueston JT. ‘Firebreak’ grafts in Dupuytren’s contracture. Aust N Z J Surg. 1984;54:277–81.

    Article  CAS  Google Scholar 

  5. Leskelä R-L, Herse F, Torkki P, Laine J, Vilkuna T, Raatikainen T. Analysis of the adoption of new health technology: the case of Dupuytren’s disease. Int J Healthc Technol Manag. 2016;15:210–27.

    Article  Google Scholar 

  6. Kan HJ, de Bekker-Grob EW, van Marion ES, van Oijen GW, van Nieuwenhoven CA, Zhou C, et al. Patients’ preferences for treatment for Dupuytren’s disease: a discrete choice experiment. Plast Reconstr Surg. 2016;137:165–73.

    Article  CAS  Google Scholar 

  7. Satish L, Palmer B, Liu F, Papatheodorou L, Rigatti L, Baratz ME, et al. Developing an animal model of Dupuytren’s disease by orthotopic transplantation of human fibroblasts into athymic rat. BMC Musculoskelet Disord. 2015;16:138. https://doi.org/10.1186/s12891-015-0597-z.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tse R, Howard J, Wu Y, Gan BS. Enhanced Dupuytren’s disease fibroblast populated collagen lattice contraction is independent of endogenous active TGF-β2. BMC Musculoskelet Disord. 2004;5:41.

    Article  Google Scholar 

  9. Dallon JC, Ehrlich HP. A review of fibroblast-populated collagen lattices. Wound Repair Regen. 2008;16:472–9.

    Article  Google Scholar 

  10. Nascimento PCH, Kobayashi EY, Lenzi LG, Dos Santos JB, et al. Glycosaminoglycans and proteoglycans in palmar fascia of patients with Dupuytren. Acta Ortop Bras. 2016;24:98–101.

    Article  Google Scholar 

  11. Koźma EM, Olczyk K, Wisowski G, et al. Alterations in the extracellular matrix proteoglycan profile in Dupuytren’s contracture affect the palmar fascia. J Biochem (Tokyo). 2005;137:463–76.

    Article  Google Scholar 

  12. Fukamizu H, Grinnell F. Spatial organization of extracellular matrix and fibroblast activity: effects of serum, transforming growth factor beta, and fibronectin. Exp Cell Res. 1990;190:276–82.

    Article  CAS  Google Scholar 

  13. Degreef I, Tejpar S, Sciot R, de Smet L. High-dosage tamoxifen as neoadjuvant treatment in minimally invasive surgery for Dupuytren disease in patients with a strong predisposition toward fibrosis: a randomized controlled trial. J Bone Joint Surg Am. 2014;96:655–62.

    Article  Google Scholar 

  14. Kuhn MA, Wang X, Payne WG, Ko F, Robson MC. Tamoxifen decreases fibroblast function and downregulates TGF(beta2) in Dupuytren’s affected palmar fascia. J Surg Res. 2002;103:146–52.

    Article  CAS  Google Scholar 

  15. Hurst LC, Badalamente MA, Hentz VR, et al. Injectable collagenase clostridium histolyticum for Dupuytren’s contracture. N Engl J Med. 2009;361(26):2579. https://doi.org/10.1056/NEJMoa0810866.

    Article  CAS  Google Scholar 

  16. Radice M, Brun P, Bernardi D, Fontana C, Cortivo R, Abatangelo G. Clostridial collagenase releases bioactive fragments from extracellular matrix molecules. J Burn Care Rehabil. 1999;20:282–91.

    Article  CAS  Google Scholar 

  17. Sanjuan-Cerveró R, Carrera-Hueso FJ, Vazquez-Ferreiro P, et al. Adverse effects of collagenase in the treatment of Dupuytren disease: a systematic review. BioDrugs Clin Immunother Biopharm Gene Ther. 2017;31:105–15.

    Google Scholar 

  18. Rubin G, Rinott M, Wolovelsky A, Rosenberg L, Shoham Y, Rozen N. A new bromelain-based enzyme for the release of Dupuytren’s contracture. Bone Jt Res. 2016;5:175–7.

    Article  CAS  Google Scholar 

  19. Bassetto F, Maschio N, Abatangelo G, Zavan B, Scarpa C, Vindigni V. Collagenase from Vibrio alginolyticus cultures: experimental study and clinical perspectives. Surg Innov. 2016;23:557–62.

    Article  Google Scholar 

  20. Yu B, Wegman TL. Thermosensitive hydrogel collagenase formulations. 2016;US20160000890A1. https://www.google.com/patents/US20160000890. Accessed 30 Aug 2019.

  21. Fischer S, Diehm Y, Henzler T, Berger MR, Kolbenschlag J, Latz A, et al. Long-term effects of the collagenase of the bacterium Clostridium histolyticum for the treatment of capsular fibrosis after silicone implants. Aesthet Plast Surg. 2017;41:211–20.

    Article  Google Scholar 

  22. Terry MJ, Sue GR, Goldberg C, Narayan D. Hueston revisited: use of acellular dermal matrix following fasciectomy for the treatment of Dupuytren’s disease. Ann Plast Surg. 2014;73(Suppl 2):S178–80.

    Article  CAS  Google Scholar 

  23. Jiang X, Wang Y, Fan D, et al. A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility. J Biomater Appl. 2017;088532821668766.

  24. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37:1528–42.

    Article  CAS  Google Scholar 

  25. Aya KL, Stern R. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen. 2014;22:579–93.

    Article  Google Scholar 

  26. Augoff K, Ratajczak K, Gosk J, Tabola R, Rutowski R. Gelatinase a activity in Dupuytren’s disease. J Hand Surg. 2006;31:1635–9.

    Article  Google Scholar 

  27. Zhang X, Wang X, Zhong W, Ren X, Sha X, Fang X. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation. Int J Nanomedicine. 2016;11:1643–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wells JM, Gaggar A, Blalock JE. MMP generated matrikines. Matrix Biol. 2015;44-46:122–9.

    Article  CAS  Google Scholar 

  29. Ulrich D, Ulrich F, Piatkowski A, Pallua N. Expression of matrix metalloproteinases and their inhibitors in cords and nodules of patients with Dupuytren’s disease. Arch Orthop Trauma Surg. 2009;129:1453–9.

    Article  Google Scholar 

  30. Gabbiani G, Majno G. Dupuytren’s contracture: fibroblast contraction? An ultrastructural study. Am J Pathol. 1972;66:131–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Verhoekx JSN, Beckett KS, Bisson MA, McGrouther DA, Grobbelaar AO, Mudera V. The mechanical environment in Dupuytren’s contracture determines cell contractility and associated MMP-mediated matrix remodeling. J Orthop Res. 2013;31:328–34.

    Article  CAS  Google Scholar 

  32. Zhou C, Liu F, Gallo PH, Baratz ME, Kathju S, Satish L. Anti-fibrotic action of pirfenidone in Dupuytren’s disease-derived fibroblasts. BMC Musculoskelet Disord. 2016;17:469.

    Article  Google Scholar 

  33. Bulstrode NW, Bisson M, Jemec B, et al. A prospective randomised clinical trial of the intra-operative use of 5-fluorouracil on the outcome of Dupuytren’s disease. J Hand Surg Edinb Scotl. 2004;29:18–21.

    Article  CAS  Google Scholar 

  34. Pines M, Spector I. Halofuginone - the multifaceted molecule. Mol Basel Switz. 2015;20:573–94.

    Google Scholar 

  35. So K, McGrouther DA, Bush JA, et al. Avotermin for scar improvement following scar revision surgery: a randomized, double-blind, within-patient, placebo-controlled, phase II clinical trial. Plast Reconstr Surg. 2011;128:163–72.

    Article  CAS  Google Scholar 

  36. Kang Y-M, Choi Y-R, Yun C-O, Park JO, Suk KS, Kim HS, et al. Down-regulation of collagen synthesis and matrix metalloproteinase expression in myofibroblasts from Dupuytren nodule using adenovirus-mediated relaxin gene therapy. J Orthop Res. 2014;32:515–23.

    Article  CAS  Google Scholar 

  37. Adzick NS, Lorenz HP. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg. 1994;220:10–8.

    Article  CAS  Google Scholar 

  38. Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature. 1992;360:361–4.

    Article  CAS  Google Scholar 

  39. Namazi H. Imiquimod: a potential weapon against Dupuytren contracture. Med Hypotheses. 2006;66:991–2.

    Article  CAS  Google Scholar 

  40. Varga J, Pasche B. Anti-TGF-ß therapy in fibrosis: recent progress and implications for systemic sclerosis. Curr Opin Rheumatol. 2008;20:720–8.

    Article  CAS  Google Scholar 

  41. Santiago B, Gutierrez-Cañas I, Dotor J, Palao G, Lasarte JJ, Ruiz J, et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol. 2005;125:450–5.

    Article  CAS  Google Scholar 

  42. Qiu SS, Dotor J, Hontanilla B. Effect of P144® (anti-TGF-β) in an ‘in vivo’ human hypertrophic scar model in nude mice. PLoS One. 2015;10:e0144489.

    Article  Google Scholar 

  43. Gomes dos Santos AL, Bochot A, Doyle A, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-β2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release. 2006;112:369–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Ethical Approval

Not necessary. Review with no patients (no clinical study).

Informed Consent

No patients are included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjuan-Cerveró, R. Prevention of Recurrences in Dupuytren’s Contracture: Are We in the Right Side?. SN Compr. Clin. Med. 1, 938–943 (2019). https://doi.org/10.1007/s42399-019-00138-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00138-6

Keywords

Navigation