Metaproteomics: an emerging tool for the identification of proteins from extreme environments

Abstract

Microbial communities from extreme environments, such as saline, arid, hot, cold, acidic, or alkaline are especially important because they have special genetic and physiological modifications to function properly under extreme environments. They possess extremozymes and other biomolecules that can be used in various industrial processes, e.g., pharmaceuticals, paper manufacturing, degradation of complex organic molecules, biofuel production and food industries. With the advent of new sequencing technologies and ‘omics’ approaches, such as metagenomics, metatranscriptomics and metaproteomics, new windows have been opened to study the microbial ecology and functional microbial communities from extreme environments. Recently, metaproteomic analysis has been extensively used to explore the functional microbial communities from various extreme environments around the globe. In this review, we have focused on the microbial diversity analysis, identification of novel proteins, and enzymes from extreme environments, through metaproteomic approaches.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137

    CAS  Article  Google Scholar 

  2. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    CAS  Article  Google Scholar 

  3. Bao Z, Okubo T, Kubota K, Kasahara Y (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052

    Article  CAS  Google Scholar 

  4. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443

    CAS  Article  Google Scholar 

  5. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    CAS  Article  Google Scholar 

  6. Bastida F, García C, von Bergen M, Moreno JL, Richnow HH, Jehmlich N (2015) Deforestation fosters bacterial diversity and the cyanobacterial community responsible for carbon fixation processes under semiarid climate: a metaproteomics study. Appl Soil Ecol 93:65–67

    Article  Google Scholar 

  7. Bastida F, Hern´andez T, Garcıa C (2014) Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J Proteom 101:31–42

    CAS  Article  Google Scholar 

  8. Bastida F, Moreno JL, Nicolas C, Hernandez T, Garc IA (2009) Soil metaproteomics: a review of an emerging environmental science. Significance methodology and perspectives. Eur J Soil Sci 60:845–859

    CAS  Article  Google Scholar 

  9. Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW (2013) Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J 7:1200–1210

    CAS  Article  Google Scholar 

  10. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Biores Technol 128:751–759

    CAS  Article  Google Scholar 

  11. Borges N, Jorge CD, Gonçalves LG, Gonçalves S, Matias PM, Santos H (2014) Mannosyl-glycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles 18:835–852

    CAS  Article  Google Scholar 

  12. Boteva N, Kambourova M (2018) Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Eight ed. Springer, Singapore

  13. Boutaiba S, Hacène H, Bidle KA, Maupin-Furlow JA (2011) Microbial diversity of the hypersaline Sidi Ameur and Himalatt salt lakes of the Algerian Sahara. J Arid Environ 75:909–916

    Article  Google Scholar 

  14. Bunge CR (2016) On the concept of a psychrophile. ISME J 10:793–795

    Article  Google Scholar 

  15. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586

    CAS  Article  Google Scholar 

  16. Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866

    CAS  Article  Google Scholar 

  17. Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Tre Plant Sci 13:499–505

    CAS  Article  Google Scholar 

  18. Chiang AJ, Malli Mohan GB, Singh NK, Vaishampayan PA, Kalkum M, Venkateswaran K (2019) Alteration of proteomes in first-generation cultures of Bacillus pumilus spores exposed to outer space. mSystems 4(4):e00195–e00119

    Article  Google Scholar 

  19. Chiapello M, Zampieri E, Mello A (2020) A small effort for researchers, a big gain for soil metaproteomics. Front Microbiol 11:88

    Article  Google Scholar 

  20. Collins RE, Deming JW (2013) An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles 17:601–610

    CAS  Article  Google Scholar 

  21. Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1(4):179–184

    Article  Google Scholar 

  22. Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    CAS  Article  Google Scholar 

  23. Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JC, Jakob U (2015) HdeB functions as an acid-protective chaperone in bacteria. J Biol Chem 290(1):65–75 (published correction appears in J Biol Chem 290(16):9950)

    CAS  Article  Google Scholar 

  24. DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    CAS  Article  Google Scholar 

  25. Defez R, Esposito R, Angelini C, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant Microbe Interact 29:484–495

    CAS  Article  Google Scholar 

  26. Delgado-García M, Aguilar CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2014) Screening for extracellular hydrolytic enzymes production by different halophilic bacteria. Mycopath 12(1):17–23

    Google Scholar 

  27. Denef VJ, VerBerkmoes NC, Shah MB, Abraham P, Lefsrud M, Hettich RL, Banfield JF (2009) Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ Microbiol 11:313–325

    CAS  Article  Google Scholar 

  28. Deocampo DM, Renaut RW (2016) Geochemistry of African soda lakes. In: Schagerl M (ed) Soda lakes of East Africa. Springer, Cham, pp 77–93

    Google Scholar 

  29. Dettmer A, dos Anjos PS, Gutterres M (2013) Special review paper: Enzymes in the leather industry. J Am Leather Chem As 108(4):146–158

    CAS  Google Scholar 

  30. Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ et al (2020) The Proteome exchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res 48:1145–1152

    Google Scholar 

  31. Everley RA, Mott TM, Wyatt SA, Toney DM, Croley TR (2008) Liquid chromatography/mass spectrometry characterization of Escherichia coli and Shigella species. J Am Soc Mass Spectrom 19:1621–1628

    CAS  Article  Google Scholar 

  32. Ewing TA, Fraaije MW, van Berkel WJH (2015) Oxidation using alcohol oxidases. In: Faber K, Fessner W-D (eds) Biocatalysis in organic synthesis 3. Georg Thieme Verlag KG, Stuttgart, pp 157–186

    Google Scholar 

  33. Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422

    CAS  Article  Google Scholar 

  34. Fernández AB, Vera-Gargallo B, Sánchez-Porro C, Ghai R, Papke RT, Rodriguez-Valera F, Ventosa A (2014) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196

    Article  Google Scholar 

  35. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2(11):898–907

    CAS  Article  Google Scholar 

  36. Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes: past, present and future. Environ Technol 31:845–856

    CAS  Article  Google Scholar 

  37. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    CAS  Article  Google Scholar 

  38. Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S (2015) Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genom 16:383

    Article  CAS  Google Scholar 

  39. Glick BR, Li J, Shah S, Penrose DM, Moffatt BA (1999) ACC deaminase is central to the functioning of plant growth promoting rhizobacteria. In: Biology and Biotechnology of the Plant Hormone Ethylene II (pp. 293–298)

  40. Gupta G, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganisms from extreme environment. IJEAB 7(2):371–380

    Google Scholar 

  41. Han MJ, Park SJ, Park TJ, Lee SY (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol Bioengin 88:426–436

    CAS  Article  Google Scholar 

  42. Hanson BT, Hewson I, Madsen EL (2014) Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb Ecol 67:520–539

    Article  Google Scholar 

  43. Hensley SA, Jung JH, Park CS, Holden JF (2014) Thermococcus paralvinellae sp. nov. and Thermococcu scleftensis sp. nov. of hyperthermophilic heterotrophs from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 64:3655–3659

    Article  CAS  Google Scholar 

  44. Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 3–15

    Google Scholar 

  45. Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 99–118

    Google Scholar 

  46. Horikoshi M, Nakajima S, Masahito U, Mukaiyama T (2011) Extremophiles Handbook bio-organisms K Japan Sci Technol Age Exploratory Research for Advanced Technology (ERATO). Mac Quan Con Proj 2:113–8656

    Google Scholar 

  47. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14

    CAS  Article  Google Scholar 

  48. Julca I, Alaminos M, González-López J, Manzanera M (2012) Xeroprotectants for the stabilization of biomaterials. Biotechnol Adv 30(6):1641–1654

    CAS  Article  Google Scholar 

  49. Karan R, Capes MD, DasSarma (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4–10

    CAS  Article  Google Scholar 

  50. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–939

    CAS  Article  Google Scholar 

  51. Keiblinger KM, Riedel K (2018) Sample preparation for metaproteome analyses of soil and leaf litter. Methods Mol Biol 1841:303–318

    CAS  Article  Google Scholar 

  52. Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L et al (2012) Soil metaproteomics—comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24

    CAS  Article  Google Scholar 

  53. Kevbrin VV (2019) Isolation and cultivation of alkaliphiles. Adv Biochem Eng Biotechnol 2019:1–32

    Google Scholar 

  54. Khalikova E, Somersalo S, Korpela T (2019) Metabolites produced by alkaliphiles with potential biotechnological applications. Adv Biochem Eng Biotechnol 2019:1–37

    Google Scholar 

  55. Khalil A (2011) Screening and characterization of thermophilic bacteria (lipase, cellulase and amylase producers) from hot springs in Saudi Arabia. J Food Agric Environ 9(2):672–675

    Google Scholar 

  56. Kleiner M (2019) Metaproteomics: Much more than measuring gene expression in microbial communities. mSystems 4(3):e00115–e00119

    CAS  Article  Google Scholar 

  57. Kosova K, Vitamvas P, Urban MO, Klima M, Roy A, Prasil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913–20942

    CAS  Article  Google Scholar 

  58. Kulshreshtha NM, Kumar A, Bisht G, Pasha S, Kumar R (2012) Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater. Sci World J 2012:345101

    Article  CAS  Google Scholar 

  59. Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JF, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895

    CAS  Article  Google Scholar 

  60. Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M (2015) Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 91:fiv011

    Article  Google Scholar 

  61. Liszka M, Clark M, Schneider E, Clark DS (2012) Nature versus nurture: developing enzymes that function under extreme conditions. Ann Rev Chem Biomol Eng 3:77–102

    CAS  Article  Google Scholar 

  62. Liu D, Li M, Xi B, Zhao Y, Wei Z, Song C, Zhu C (2015) Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant. Microbial Biotec 8:950–960

    CAS  Article  Google Scholar 

  63. Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:240–247

    Article  Google Scholar 

  64. López-López O, Cerdán ME, González-Siso MI (2013) Hot spring functional metagenomics. Life 3:308–320

    Article  CAS  Google Scholar 

  65. Lüders S, Fallet C, Franco-Lara E (2009) Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 7::36

    Article  CAS  Google Scholar 

  66. Mamo G, Mattiasson B (2016) Alkaliphilic microorganisms in biotechnology. Biotechnology of extremophiles. Springer, Cham, pp 243–272

    Google Scholar 

  67. Manzanera M, de Castro AG, Tøndervik A, Rayner-Brandes M, Strøm AR, Tunnacliffe A (2002) Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol 68:328–4333

    Article  CAS  Google Scholar 

  68. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microb 6:805–814

    CAS  Article  Google Scholar 

  69. Martinez X, Pozuelo M, Pascal V, Campos D, Gut I, Gut M et al (2016) MetaTrans: an open-source pipeline for metatranscriptomics. Sci Rep 6:26447

    CAS  Article  Google Scholar 

  70. Mattarozzi M, Manfredi M, Montanini B, Gosetti F, Sanangelantoni AM, Marengo E et al (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409:2327–2339

    CAS  Article  Google Scholar 

  71. Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149

    CAS  Article  Google Scholar 

  72. Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505

    Article  Google Scholar 

  73. Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017:6943952

    Article  CAS  Google Scholar 

  74. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  Article  Google Scholar 

  75. Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4:673–685

    CAS  Article  Google Scholar 

  76. Mueller RS, Dill BD, Pan C, Belnap CP, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF (2011) Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ Microbiol 13:2279–2292

    CAS  Article  Google Scholar 

  77. Mukhtar S, Ahmad S, Bashir A, Mirza MS, Mehnaz S, Malik KA (2019c) Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 228:126307

    CAS  Article  Google Scholar 

  78. Mukhtar S, Laaldin N, Mehnaz S, Malik KA (2018c) Recent advances in soil metaproteomics from hypersaline environments. Proc Pak Acad Sci 55(4):19–28

    Google Scholar 

  79. Mukhtar S, Malik KA, Mehnaz S (2018a) Isolation and characterization of haloalkaliphilic bacteria isolated from the rhizosphere of Dichanthium annulatum. J Adv Res Biotech 3:1–9

    Article  Google Scholar 

  80. Mukhtar S, Mehnaz S, Malik KA (2019a) Microbiome of halophyte: diversity and importance for plant health and productivity. Microbiol Biotech Lett 47(1):1–10

    Article  Google Scholar 

  81. Mukhtar S, Mehnaz S, Malik KA (2019b) Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crops improvement. Environ Sustain. https://doi.org/10.1007/s42398-019-00061-5

    Article  Google Scholar 

  82. Mukhtar S, Mehnaz S, Malik KA (2020) Osmoadaptation in halophilic bacteria and archaea. Res J Biotech 15(5):154–161

    Google Scholar 

  83. Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Kauser AM (2018b) Impact of soil salinity on the structure and composition of rhizosphere microbiome. World J Microbiol Biotech 34:136

    Article  CAS  Google Scholar 

  84. Myka KK, Allcock DJ, Eloe-Fadrosh EA, Tryfona T, Haag AF, Lauro FM et al (2017) Adaptations of cold- and pressure-loving bacteria to the deep-sea environment: cell envelope and flagella. In: Chénard C, Lauro F et al (eds) Microbial ecology of extreme environments. Springer, Cham, pp 51–80

    Google Scholar 

  85. Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN et al (2005) Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  CAS  Google Scholar 

  86. Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ, Etemadifar Z et al (2017) Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci Rep 7:11522

    Article  CAS  Google Scholar 

  87. Nicora CD, Anderson BJ, Calliste SJ, Norbeck AD (2013) Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 13:2776–2785

    CAS  Article  Google Scholar 

  88. Nunn BL, Slattery KV, Cameron KA, Timmins-Schiffman E, Junge K (2015) Proteomics of Colwellia psychrerythraea at subzero temperatures—A life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 17:2319–2335

    CAS  Article  Google Scholar 

  89. Oren A (2002) Halophilic microorganisms and their environments. Kluver Academic Publishers, London

    Google Scholar 

  90. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Tech 31:825–834

    CAS  Article  Google Scholar 

  91. Osman JR, Regeard C, Badel C, Fernandes G, DuBow MS (2019) Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Anton Leeuw Int J G 112(3):351–365

    CAS  Article  Google Scholar 

  92. Overland J, Dunlea E, Box JE, Corell R, Forsius M, Kattsov V, Wang M (2019) The urgency of Arctic change. Polar Sci 21:6–13

    Article  Google Scholar 

  93. Paul D, Kumbhare SV, Mhatre SS, Chowdhury SP, Shetty SA, Marathe NP, Bhute S, Shouche YS (2016) Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite Crater Lake within basalt rock. Front Microbiol 6:1553

    Article  Google Scholar 

  94. Pieper R, Huang ST, Suh MJ (2014) Proteomics and metaproteomics. Encycl Metagen 8:1–11

    Google Scholar 

  95. Piette F, Leprince P, Feller G (2012) Is there a cold shock response in the Antarctic psychrophile Pseudoalteromonas haloplanktis? Extremophiles 16:681–683

    CAS  Article  Google Scholar 

  96. Pinar G, Kraková L, Pangallo D, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2014) Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo Italy. Extremophiles 18(4):677–691

    CAS  Article  Google Scholar 

  97. Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotech 3:75

    Article  Google Scholar 

  98. Qi J, Xu M, An C, Wu M, Zhang Y, Li X, Zhang Q, Lu G (2017) Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Phys Earth Planet Inter 263:12–22

    CAS  Article  Google Scholar 

  99. Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: Molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271–281

    CAS  Article  Google Scholar 

  100. Richard H, Foster JW (2004) Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186(18):6032–6041

    CAS  Article  Google Scholar 

  101. Roca A, Pizarro-Tobías P, Udaondo Z, Fernández M, Matilla MA, Molina‐Henares MA, Ramos JL (2013) Analysis of the plant growth‐promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD‐1. Enviro Microbiol 15(3):780–794

    CAS  Article  Google Scholar 

  102. Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million years old permafrost: a genome and transcriptome approach. BMC Genom 9:547

    Article  CAS  Google Scholar 

  103. Sarwar MK, Azam I, Iqbal T (2015) Biology and applications of halophilic bacteria and archaea: A. eJBio 11(3):98–103

    Google Scholar 

  104. Schneider T, Keiblinger KM, Schmid E, Gleixner SK (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    CAS  Article  Google Scholar 

  105. Schneider T, Schmid E, de Castro JV, Cardinale M, Eberl L, Grube M et al (2007) Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol 73:3343–3347

    Article  CAS  Google Scholar 

  106. Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    CAS  Article  Google Scholar 

  107. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ et al (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    CAS  Article  Google Scholar 

  108. Shi W, Takano T, Liu S (2012) Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World J Microbiol Biotechnol 28(5):2147–2157

    Article  Google Scholar 

  109. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526

    CAS  Article  Google Scholar 

  110. Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci 10(4):309–326

    Google Scholar 

  111. Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176(6):1729–1737

    CAS  Article  Google Scholar 

  112. Spanò A, Gugliandolo C, Lentinia V, Maugeri TL, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67:21–29

    Article  CAS  Google Scholar 

  113. Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14:1333–1346

    CAS  Article  Google Scholar 

  114. Sukul P, Lupilov N, Leichert LI (2018) Characterization of ML-005, a novel Metaproteomics derived Esterase. Front Microbiol 9:1925

    Article  Google Scholar 

  115. Sussulini A, Becker JS (2011) Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics 3:1271–1279

    CAS  Article  Google Scholar 

  116. Sánchez-Porro C, Tokunaga H, Tokunaga M, Ventosa A (2007) Chromohalobacter japonicus sp. nov., a moderately halophilic bacterium isolated from a Japanese salty food. Int J Syst Evol Microbiol 57:2262–2266

    Article  CAS  Google Scholar 

  117. Talwar C, Nagar S, Kumar R, Scaria J, Lal R, Negi RK (2020) Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Sci Rep 10(1):1151

    CAS  Article  Google Scholar 

  118. Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L (2014) Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 80(2):478–485

    Article  CAS  Google Scholar 

  119. Thompson SA, Blaser MJ (1995) Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect Immun 63(6):2185–2193

    CAS  Article  Google Scholar 

  120. Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline Soda Lake Brines. Front Microbiol 7:211

    Article  Google Scholar 

  121. Vilanova C, Porcar M (2016) Are multi-omics enough? Nat Microbiol 1(8):16101

    CAS  Article  Google Scholar 

  122. Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H (2020) Metaproteomics: a strategy to study the taxonomy and functionality of the gut microbiota. J Proteom 219:103737

    CAS  Article  Google Scholar 

  123. Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ et al (2012) A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:1883–1900

    CAS  Article  Google Scholar 

  124. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920

    CAS  Article  Google Scholar 

  125. Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15(20):3409–3417

    CAS  Article  Google Scholar 

  126. Xie J, He Z, Liu X, Liu X, van Nostrand JD, Deng Y, Wu L, Zhou J, Qiu G (2011) Geochip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl Environ Microbiol 77:991–999

    CAS  Article  Google Scholar 

  127. Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466

    CAS  Article  Google Scholar 

  128. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    CAS  Article  Google Scholar 

  129. Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    Article  Google Scholar 

  130. Zhang X, Niu J, Liang Y, Liu X, Yin H (2016) Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 17:21

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kauser Abdulla Malik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maseh, K., Ehsan, N., Mukhtar, S. et al. Metaproteomics: an emerging tool for the identification of proteins from extreme environments. Environmental Sustainability (2021). https://doi.org/10.1007/s42398-020-00158-2

Download citation

Keywords

  • Functional microbial diversity
  • Extremozymes
  • Metaproteomics
  • Extreme environments