Effect of cadmium on nutrients concentration in duckweed: a case of Lemna minor and Lemna gibba

Abstract

Pollution due to heavy metals in the aquatic environment remains a widespread concern. Heavy metal like cadmium (Cd) is associated with reduced absorption of nutrients, decreased cell growth, chlorosis, and necrosis of roots. In the present study, the effects of varied Cd concentrations on the macro and micronutrients (zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), potassium (K), calcium (Ca), and sodium (Na)) of duckweed plant species namely Lemna minor and Lemna gibba were investigated. Plant nutrients like Zn, Cu, Mn, and Fe were increased to 1460 mg/kg, 40 mg/kg, 1276 mg/kg, and 98.3 mg/kg respectively, for L. minor when compared with control and 1621.7 mg/kg, 28.3 mg/kg, 1081.7 mg/kg and 63.3 mg/kg respectively, in case of L. gibba with the increase in treatment time when treated with Cd. Na and K concentrations were found to be decreased with increasing metal concentration and treatment period. Statistical analysis (two-way ANOVA) also confirms the individual effect of metal concentration and treatment interval as well as a combined effect of both factors together on macro and micronutrient concentrations. The effect of Cd stress conditions on the various characteristic functional groups was also assessed with the help of Fourier-transform infrared spectroscopy (FTIR). FTIR spectra of both control and metal treated plants exhibited minor changes after the phytoremediation process. The study showed that the contents of essential macro and micronutrients (Zn, Cu, Mn, and Fe) were not significantly reduced by Cd even at a high concentration in the cultivation medium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adamczyk-Szabela D, Lisowska K, Romanowska-Duda Z (2020) Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci Rep 10:1675. https://doi.org/10.1038/s41598-020-58491-9

    CAS  Article  Google Scholar 

  2. Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298

    CAS  Article  Google Scholar 

  3. Asefi M, Zamani-Ahamadmahmoodi R (2015) Mercury concentrations and health risk assessment for two fish species, Barbus grypus and Barbus luteus from the maroon river, Khuzestan province. Iran Environ Monit Assess 187:653

    Article  CAS  Google Scholar 

  4. Axtell NR, Sternberg SPK, Claussen K (2003) Lead and nickel removal using microspora and Lemna minor. Biores Technol 89:41–48

    CAS  Article  Google Scholar 

  5. Balen B, Tkalec M, Šikić S, Tolić S, Cvjetko P, Pavlica M, Vidaković-Cifrek Ž (2011) Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology 20:815–826. https://doi.org/10.1007/s10646-011-0633-1

    CAS  Article  Google Scholar 

  6. Bauddh K, Singh RP (2015) Assessment of metal uptake capacity of castor bean and mustard for phytoremediation of nickel from contaminated soil. Bioremediat J 19(2):124–138

    CAS  Article  Google Scholar 

  7. Bortey-Sam N, Nakayama SMM, Ikenaka Y, Akoto O, Baidoo E, Mizukawa H, Ishizuka M (2015) Health risk assessment of heavy metals and metalloids in drinking water from communities near gold mines in Tarkwa. Ghana Environ Monit Assess 187:397

    Article  CAS  Google Scholar 

  8. Chan NW (2012) Managing urban rivers and water quality in Malaysia for sustainable water resources. Int J Water Resour Dev 28(2):343–354

    Article  Google Scholar 

  9. Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127(2):139–147

    CAS  Article  Google Scholar 

  10. Chaudhary E, Sharma P (2019) Chromium and cadmium removal from wastewater using duckweed-Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int J Phytoremediat 21(3):279–286

    CAS  Article  Google Scholar 

  11. Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K (2014) Cadmium removal by Lemna minor and Spirodela polyrhiza. Int J Phytoremediat 16(11):1119–1132

    CAS  Article  Google Scholar 

  12. Dražić G, Mihailović N, Stojanović Z (2004) Cadmium toxicity: the effect on macro- and micro-nutrient contents in soybean seedlings. Biol Plant 48:605–607

    Article  Google Scholar 

  13. D’Souza L, Devi P, Shridhar MPD, Naik CG (2008) Use of fourier transform infrared (FTIR) spectroscopy to study cadmium-induced changes in Padinatetrastromatica (Hauck). Anal Chem Insights 3:117739010800300000

    Article  Google Scholar 

  14. Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64(1):63–77

    CAS  Article  Google Scholar 

  15. Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02215-8

    Article  Google Scholar 

  16. Goswami C, Majumder A, Misra AK, Bandyopadhyay K (2014) Arsenic uptake by Lemna minor in hydroponic system. Int J Phytoremediat 16(12):1221–1227

    CAS  Article  Google Scholar 

  17. Gulgun C, Inci T, Feride S (2006) 17 [beta]-Estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: a comparative study with nonylphenol. Aquatic Toxicol (Amsterdam, Netherlands) 77:53–63

    Article  CAS  Google Scholar 

  18. Harrison SJ, Lepp NW, Phipps DA (1983) Copper uptake by excised roots: III. Effect of manganese on copper uptake. Zeitschrift fürPflanzenphysiologie 109(4):285–289

    CAS  Article  Google Scholar 

  19. Hasan SH, Talat M, Rai S (2007) Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). BioresTechnol 98(4):918–928

    CAS  Google Scholar 

  20. Hurd NA, Sternberg SP (2008) Bioremoval of aqueous lead using Lemna minor. Int J Phytoremediat 10:278–288

    CAS  Article  Google Scholar 

  21. Jayasri MA, Suthindhiran K (2017) Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci 7:1247–1253

    CAS  Article  Google Scholar 

  22. Kumar SR, Arumugam T, Anandakumar C, Balakrishnan S, Rajavel D (2013) Use of plant species in controlling environmental pollution. Bull Environ Pharmacol Life Sci 2:52–63

    Google Scholar 

  23. Kusin FM, Muhammad SN, Zahar MSM, Madzin Z (2016a) Integrated river basin management: incorporating the use of abandoned mining pool and implication on water quality status. Desalin Water Treat 57(60):29126–29136

    Article  Google Scholar 

  24. Kusin FM, Zahar MSM, Muhammad SN, Mohamad ND, Zin ZM, Sharif SM (2016b) Hybrid off-river augmentation system as an alternative raw water resource: the hydrogeochemistry of abandoned mining ponds. Environ Earth Sci 75(3):1–15

    CAS  Article  Google Scholar 

  25. Medda S, Mondal NK (2017) Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann Agrar Sci 15(3):396–401

    Article  Google Scholar 

  26. Megateli S, Semsari S, Couderchet M (2009) Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 72(6):1774–1780

    CAS  Article  Google Scholar 

  27. Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. BioresTechnol 99(15):7091–7097

    CAS  Google Scholar 

  28. Mishra NS, Reddy R, Kuila A, Rani A, Mukherjee P, Nawaz A, Pichiah S (2017) A review on advanced oxidation processes for effective water treatment. Curr World Environ 12(3):470

    Article  Google Scholar 

  29. Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P (2018) The role of heavy metals in plant response to biotic stress. Molecules (Basel, Switzerland) 23(9):2320

    Article  CAS  Google Scholar 

  30. Mountouris A, Voutsas E, Tassios D (2002) Bioconcentration of heavy metals in aquatic environments: the importance of bioavailability. Mar Pollut Bull 44:1136–1141

    CAS  Article  Google Scholar 

  31. Nair LD, Sar KS, Arora A, Mahapatra D (2013) Fourier transform infrared spectroscopy analysis of few medicinal plants of Chhattisgarh, India. J Adv Pharm Educ Res 3(3):196–200

    Google Scholar 

  32. Namasivayam C, Ranganathan K (1995) Removal of Pb (II), Cd (II), Ni (II) and mixture of metal ions by adsorption onto ‘waste’ Fe (III)/Cr (III) hydroxide and fixed bed studies. Environ Technol 16(9):851–860

    CAS  Google Scholar 

  33. Parlak KU, Yilmaz DD (2013) Ecophysiological tolerance of Lemna gibba L. exposed to cadmium. Ecotoxicol Environ Saf 91:79–85

    Article  CAS  Google Scholar 

  34. Pogrzeba M, Rusinowski S, Krzyżak J (2018) Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Environ Sci Pollut Res Int 25(12):12096–12106

    CAS  Article  Google Scholar 

  35. Rezvani M, Zaefarian F, Miransari M, Nematzadeh GA (2012) Uptake and translocation of cadmium and nutrients by Aeluropus littoralis. Arch Agron Soil Sci 58:1413–1425

    CAS  Article  Google Scholar 

  36. Rivelli AR, Puschenreiter M, Maria SD (2018) Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. Plant Soil Environ 60:80–86

    Google Scholar 

  37. Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gómez M, Del Rio LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31(sup1):25–31

    Article  Google Scholar 

  38. Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Article  Google Scholar 

  39. Sarwar N, Saifullah A, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  Article  Google Scholar 

  40. Sasmaz A, Obek E (2012) The accumulation of silver and gold in Lemna gibba L. exposed to secondary effluents. Chemie der ErdeGeochem 72(2):149–152

    CAS  Article  Google Scholar 

  41. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    CAS  Google Scholar 

  42. Shackira AM, Jos TP (2019) Cd2+ influences metabolism and elemental distribution in roots of Acanthus ilicifolius L. Int J Phytoremediat. https://doi.org/10.1080/15226514.2019.1577356

    Article  Google Scholar 

  43. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144

    CAS  Article  Google Scholar 

  44. Siedlecka A (1995) Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 64(3):265–272

    CAS  Article  Google Scholar 

  45. Siedlecka A, BaszyńAski T (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87(2):199–202

    CAS  Article  Google Scholar 

  46. Siedlecka A, Krupa Z (1996) Interaction between cadmium and iron. Accumulation and distribution of metals and changes in growth parameters of Phaseolus vulgaris L. seedlings. Acta Soc Bot Pol 65(3–4):277

    CAS  Google Scholar 

  47. Singh SK, Kraemer M, Trebouet D (2012) Studies on treatment of a thermo-mechanical process effluent from paper industry using ultrafiltration for water reuse. Desalin Water Treat 49:208–217

    CAS  Article  Google Scholar 

  48. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Google Scholar 

  49. Uysal Y (2013) Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow. J Hazard Mater 263:486–492

    CAS  Article  Google Scholar 

  50. Velichkova KN, Sirakov IN, Slavcheva-Sirakova DT (2019) Bioaccumulation, growth and photosynthetic response of a new found in bulgaria invasive species Lemna minuta and L. valdiviana to heavy metal pollution. Planta Daninha. https://doi.org/10.1590/s0100-83582019370100119

    Article  Google Scholar 

  51. Verma R, Suthar S (2015) Lead and cadmium removal from water using duckweed—Lemna gibba L.: impact of pH and initial metal load. Alex Eng J 54(4):1297–1304

    Article  Google Scholar 

  52. Wallace A, Wallace GA, Cha JW (1992) Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents—the special case of iron. J Plant Nutr 15(10):1589–1598

    CAS  Article  Google Scholar 

  53. Yan X, Jin-qin W, Jin H, Feng-ying L, Ming W (2018) The response of duckweed (Lemna minor L.) roots to Cd and its chemical forms. J Chem. https://doi.org/10.1155/2018/7274020

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by Union Grant Commission—Basic Scientific Research (BSR) Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Praveen Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 314 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, E., Sharma, P. Effect of cadmium on nutrients concentration in duckweed: a case of Lemna minor and Lemna gibba. Environmental Sustainability (2021). https://doi.org/10.1007/s42398-020-00155-5

Download citation

Keywords

  • Lemna minor
  • Lemna gibba
  • Cadmium
  • Heavy metal
  • Phytoremediation
  • Water pollution