Rhamnolipids and siderophores from Pseudomonas protegens strain BNJ-SS-45 isolated from wheat rhizosphere

Abstract

Pseudomonas protegens strain BNJ-SS-45 possesses potential to secrete multiple antifungal molecules and other metabolites. To expand its metabolic potential, herein, an attempt has been made to characterize rhamnolipid and siderophore molecules. The analysis of purified biosurfactants using liquid chromatography-tandem mass spectrometry (LC–MS/MS) revealed different congeners where mono-rhamnolipids Rha-C10-C14:1/Rha-C12-C12:1, Rha-C10-C12/Rha-C12-C10, Rha-C12-C12/Rha- H2O C10-C14/Rha-C14-C10, Rha-C10-C10:1/Rha-C10:1-C10, Rha-C10-C12:1/Rha-C12:1-C10 are present. Structural investigation of XAD-4 purified siderophores using liquid chromatography quadrupole time-of-flight mass spectrometry (LC–MS-QTOF) analysis revealed the presence of isoquinoline N oxide as a chromophore. Using response surface methodology for optimization a sustainable increase in the level of metabolites is achieved and resulted in 81% and 66% enhancement in rhamnolipids and siderophores level in a 7 L fermentor respectively. Rhamnolipids obtained also exhibited antagonistic activity against both pathogenic fungi and bacteria. These are promising candidates to be used as biocontrol agents especially due to their biodegradable and eco-friendly nature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbasi H, Noghabi KA, Hamedi MM, Zahiri HS, Moosavi-Movahedi AA, Amanlou M, Ortiz A (2013) Physicochemical characterization of a monorhamnolipid secreted by Pseudomonas aeruginosa MA01 in aqueous media. An experimental and molecular dynamics study. Colloids Surf B Biointerfaces 10:256–265

    Article  CAS  Google Scholar 

  2. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86(5):1323–1336

    CAS  Article  Google Scholar 

  3. Akbari S, Abdurahman NH, Yunus RM, Fayaz F, Alara OR (2018) Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnol Res Innov 2(1):81–90

    Article  Google Scholar 

  4. Bajpai A, Singh B, Joshi S, Johri BN (2017) Production and characterization of an antifungal compound from Pseudomonas protegens strain W45. Proc Natl Acad Sci India Sect B Biol Sci 88(3):1081–1089

    Article  CAS  Google Scholar 

  5. Bajpai A, Shende KK, Meena N, Suravajhala P, Medicherla KM, Johri BN (2018) Draft genome sequence of the plant growth-promoting rhizobacterium Pseudomonas protegens strain BNJ-SS-45, isolated from rhizosphere soil of Wheat (Triticum aestivum). Microbiol Res Announc 7(8):e00926–e1018

    Google Scholar 

  6. Câmara JMD, Sousa MAS, Barros Neto EL (2019) Optimization and characterization of biosurfactant rhamnolipid production by Pseudomonas aeruginosa isolated from an artificially contaminated soil. J Surfactants Deterg 22(4):711–719

    Article  CAS  Google Scholar 

  7. Cirstea DM, Stefanescu M, Pahonţu JM, Cornea C (2014) Use of some carbon sources by Pseudomonas strains for synthesizing polyhydroxyalkanoates and/or rhamnolipids. Rom Biotechnol Lett 19(30):9400–9408

    Google Scholar 

  8. CoHort/CoStat Software (1991) CoHort Software, Monterey

  9. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224

    CAS  Article  Google Scholar 

  10. Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016) Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal Agric Biotechnol 5:38–47

    Article  Google Scholar 

  11. El-Housseiny GS, Aboulwafa MM, Aboshanab KA, Hassouna NAH (2016) Optimization of rhamnolipid production by P. aeruginosa isolate P6. J Surfactants Deterg 19:943–955

    CAS  Article  Google Scholar 

  12. El-Sheshtawy HS, Doheim MM (2014) Selection of Pseudomonas aeruginosa for biosurfactant production and studies of its antimicrobial activity. Egypt J Petrol 23:1–6

    Article  Google Scholar 

  13. Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150

    Article  CAS  Google Scholar 

  14. Haba E, Bouhdid S, Torrego-Solana N, Marqués AM, Espuny MJ, García-Celma MJ, Manresa A (2014) Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int J Pharm 476:134–141

    CAS  Article  Google Scholar 

  15. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657. https://doi.org/10.1039/b906679a

    CAS  Article  Google Scholar 

  16. Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, Masáka J, Jirkua V, Řezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 193:45–51

    Article  CAS  Google Scholar 

  17. Jahan R, Bodratti AM, Tsianou M, Alexandridis P (2019) Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 275:102061

    Article  CAS  Google Scholar 

  18. Kim HS, Jeon JW, Kim BH, Ahn CY, Oh HM, Yoon BD (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 70:391–396

    CAS  Article  Google Scholar 

  19. Laabei GM, Jamieson WD, Lewis SE, Diggle SP, Jenkins ATA (2014) A new assay for rhamnolipid detection-important virulence factors of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 98:7199–7209

    CAS  Article  Google Scholar 

  20. Meyer JM (2010) Pyoverdine siderophores as taxonomic and phylogenic markers. In: Ramos JL, Filloux A (eds) Pseudomonas. Springer, Dordrecht, pp 201–233

    Google Scholar 

  21. Mishra J, Arora NK (2017) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.12.004

    Article  Google Scholar 

  22. Mnif I, Ellouz-Chaabouni S, Ghribi D (2018) Glycolipid biosurfactants, main classes, functional properties and related potential applications in environmental biotechnology. J Polym Environ 26(5):2192–2206

    CAS  Article  Google Scholar 

  23. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure—function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488:211–218

    CAS  Article  Google Scholar 

  24. Mukherjee S, Das P, Sivapathasekaran C, Sen R (2009) Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification. Lett Appl Microbiol 48:281–288

    CAS  Article  Google Scholar 

  25. Nalini S, Parthasarathi R (2018) Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Ann Agric Sci 16(2):108–115

    Google Scholar 

  26. Ndlovu T, Rautenbach M, Khan S, Khan W (2017) Variants of lipopeptides and glycolipids produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa cultured in different carbon substrates. AMB Express 7(1):109

    Article  CAS  Google Scholar 

  27. Oluwaseun AC, Kola OJ, Mishra P, Singh JR, Singh AK, Cameotra SS, Micheal BO (2017) Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustain Chem Pharm 6:26–36

    Article  Google Scholar 

  28. Onwasi CO, Odibo FJC (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942

    Article  CAS  Google Scholar 

  29. Paraszkiewicz K, Bernat P, Kuśmierska A, Chojniak J, Płaza G (2018) Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J Environ Manag 209:65–70

    CAS  Article  Google Scholar 

  30. Pathania AS, Jana AK (2020) Improvement in production of rhamnolipids using fried oil with hydrophilic co-substrate by indigenous Pseudomonas aeruginosa NJ2 and characterizations. Appl Biochem Biotechnol 1–24

  31. Perez C, Paul M, Bezique P (1990) An antifungal assay by the agar well diffusion method. Acta Biol Med Exp 15:113–115

    Google Scholar 

  32. Priji P, Sajith S, Unni KN, Anderson RC, Benjamin S (2017) Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant. J Basic Microbiol 57:21–33

    CAS  Article  Google Scholar 

  33. Reddy KS, Khan MY, Archana K, Reddy MG, Hameeda B (2016) Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Bioresour Technol 221:291–299

    Article  CAS  Google Scholar 

  34. Rosenberg M, Gutnick DL, Rosenberg E (1980) Adherence of bacteria to hydro-carbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    CAS  Article  Google Scholar 

  35. Saini S, Verma A, Kumar A, Prakash A, Sharma SK, Ramesh A, Johri BN (2016) Identification and characterization of antifungal metabolite producing Pseudomonas protegens strain BNJ-SS-45 isolated from rhizosphere of wheat crop (Triticum aestivum L). J Appl Sci Pure Sci Agric 2:69–76

    Google Scholar 

  36. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401

    Article  CAS  Google Scholar 

  37. Schmidberger A, Henkel M, Hausmann R, Schwartz T (2014) Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 98:6725–6737

    CAS  Article  Google Scholar 

  38. Sharma R, Singh J, Verma N (2018) Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery. 3 Biotech 8(1):20

    Article  Google Scholar 

  39. Siegmund I, Wagner F (1991) New method for detecting rhamnolipid secreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268. https://doi.org/10.1007/bf02438660

    CAS  Article  Google Scholar 

  40. Singh P, Patil Y, Rale V (2019) Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 126(1):2–13

    CAS  Article  Google Scholar 

  41. Soares dos Santos A, Pereira N Jr, Freire DMG (2016) Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1. PeerJ 4:e2078. https://doi.org/10.7717/peerj.2078

    CAS  Article  Google Scholar 

  42. Takeuchi K, Noda N, Someya N (2014) Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PLoS ONE 9(4):e93683

    Article  CAS  Google Scholar 

  43. Tan YN, Li Q (2018) Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact 17(1):89

    Article  CAS  Google Scholar 

  44. Twigg MS, Tripathi L, Zompra A, Salek K, Irorere VU, Gutierrez T, Spyroulias GA, Marchant R, Banat IM (2018) Identification and characterization of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Appl Microbiol Biotechnol 102(19):8537–8549

    CAS  Article  Google Scholar 

  45. Vos IA, Pieterse CM, Van Wees SC (2013) Costs and benefits of hormone-regulated plant defences. Plant Pathol 62:43–55

    Article  Google Scholar 

  46. Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146–154

    CAS  Article  Google Scholar 

  47. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80–97

    CAS  Article  Google Scholar 

  48. Yeterian E, Martin LW, Guillon L, Journet L, Lamont IL, Schalk IJ (2010) Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38:1447–1459

    CAS  Article  Google Scholar 

  49. Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61:2247–3225

    CAS  Article  Google Scholar 

  50. Zodpe S (2016) Rhamnolipid biosurfactant production by strain of Pseudomonas aeruginosa using different raw materials. Int J Curr Microbiol Appl Sci 5:407–413

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the grants of National Academy of Sciences India, Allahabad to Prof. B.N. Johri (Former NASI Senior Scientist) at Dept of Biotechnology, Barkatullah University, Bhopal, India. Instrumentation facility received by DBT Builder Program and IIT Bombay, SAIF for LC–MS/MS and LC-QToF-MS analysis are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Apekcha Bajpai.

Ethics declarations

Conflict of interest

The authors declare that there is no financial/commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bajpai, A., Singh, B. & Johri, B.N. Rhamnolipids and siderophores from Pseudomonas protegens strain BNJ-SS-45 isolated from wheat rhizosphere. Environmental Sustainability 3, 219–228 (2020). https://doi.org/10.1007/s42398-020-00108-y

Download citation

Keywords

  • Pseudomonas protegens
  • Rhamnolipid
  • Siderophore
  • Optimization
  • Response surface methodology