Skip to main content

Advertisement

Log in

Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

In natural ecosystems, diverse iron oxidizing bacteria are of common occurrence. Basically, two different mechanisms have been proposed for catalysis of iron oxidation by bacterial metabolic systems which differ mainly at cytochrome and rusticyanin level. Biological iron oxidizers not only affect the cycling of iron but also efficiently minimize the concentrations of hazardous metals such as lead, nickel, copper, chromium, cadmium and cobalt. The ferric iron generated after biological oxidation forms complexes with metals/metalloids present in their vicinity. Ferric ions produced by biological actions also act as catalyst for oxidation of toxic metalloid such as arsenite (As III) converting it into less toxic form. Most importantly, bacterial iron oxidizers have commercially been employed in industrial bioleaching for the recovery of important elements and remediation of acid mine drainage water. Currently, heavy metal contamination has emerged as one of the prime concerns for the world and is posing serious threats to both environment and human health. Although varieties of physical and chemical techniques are currently being used to manage the metal contamination, treatment using biological iron oxidation approaches are convincing because of their ecofriendly nature and low sludge generation. In the present review we have tried to focus on the diversity of bacterial iron oxidizers, mechanisms of iron oxidation by bacterial species, and role of bacterial iron oxidizers in bioremediation of metal pollutants along with future research possibilities in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB (2011) Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157:111–122

    Article  CAS  Google Scholar 

  • Arroyo FA, Siering PL, Hampton JS, Mccartney A, Hurst MP, Wolfe GV, Wilson MS (2015) Isolation and characterization of novel iron-oxidizing autotrophic and mixotrophic bacteria from boiling springs lake, an oligotrophic, acidic geothermal habitat. Geomicrobiol J 32:140–157

    Article  CAS  Google Scholar 

  • Bach W, Edwards KJ (2003) Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Ac 67:3871–3887

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Johnson DB, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89:99–108

    Article  CAS  Google Scholar 

  • Bird LJ, Bonnefoy V, Newman DK (2011) Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19:330–340

    Article  CAS  Google Scholar 

  • Blais JF, Tyagi RD, Auclair JC (1993) Metals removal from sewage sludge by indigenous iron-oxidizing bacteria. J Environ Sci Health Part A Environ Sci Eng Toxicol 28:443–467

    Article  Google Scholar 

  • Camargo FP, do Prado PF, Tonello PS, Dos Santos ACA, Duarte ICS (2018) Bioleaching of toxic metals from sewage sludge by co-inoculation of Acidithiobacillus and the biosurfactant-producing yeast Meyerozyma guilliermondii. J Environ Manag 211:28–35

    Article  CAS  Google Scholar 

  • Canfield DE, Thamdrup B, Kristensen E (2005) Aquatic geomocrobiology. Elsevier, Amsterdam, p 640

    Google Scholar 

  • Colmer AR, Temple KL, Hinkle ME (1950) An iron-oxidizing bacterium from the drainage of some bituminous coal mines. J Bacteriol 59:317–328

    CAS  Google Scholar 

  • Croal LR, Jiao Y, Newman DK (2007) The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J Bacteriol 189:1774–1782

    Article  CAS  Google Scholar 

  • de Vet WWJM, Dinkla IJT, Rietveld LC, van Loosdrecht MCM (2011) Biological iron oxidation by Gallionella sp. in drinking water production under fully aerated conditions. Water Res 45:5389–5398

    Article  CAS  Google Scholar 

  • Drogui P, Mercier G, Blais JF (2005) Bioproduction of ferric sulfate used during heavy metals removal from sewage sludge. J Environ Qual 34:816–824

    Article  CAS  Google Scholar 

  • Duquesne K, Lebrun S, Casiot C, Bruneel O, Personné JC, Leblanc M, Elbaz-Poulichet F, Morin G, Bonnefoy V (2003) Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol 69:6165–6173

    Article  CAS  Google Scholar 

  • Ehrenberg CG (1837) Remarks on the real occurrence of fossil infusoria, and their extensive diffusion. Taylor’s Sci Mem 1:400–413

    Google Scholar 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526

    CAS  Google Scholar 

  • Ehrlich HL, Newman DK (eds) (2009) Geomicrobiology. CRC Press, Boca Raton

    Google Scholar 

  • Emerson D, Revsbech NP (1994) Investigation of an iron oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl Environ Microbiol 60:4022–4031

    CAS  Google Scholar 

  • Emerson D, Weiss JV (2004) Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and laboratory. Geomicrobiol J 21:405–414

    Article  CAS  Google Scholar 

  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Craig L, Moyer CL (2007) A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One 2:e667

    Article  CAS  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Ann Rev Microbiol 64:561–583

    Article  CAS  Google Scholar 

  • Ghiorse WC, Ehrlich HL (1992) Microbial biomineralization of iron and manganese. In: Fitzpatrick RW, Skinner HCW (eds) Iron and manganese biomineralization processes in modern and ancient environment. Catena, Reiskirchen, pp 75–99

    Google Scholar 

  • Gu T, Rastegar SO, Mousavi SM, Li M, Zhou M (2018) Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour Technol 261:428–440

    Article  CAS  Google Scholar 

  • Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137:2657–2661

    Article  CAS  Google Scholar 

  • Hallbeck L, Stahl F, Pedersen K (1993) Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol 139:1531–1535

    Article  CAS  Google Scholar 

  • Hallberg KB, Gonzalez-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  CAS  Google Scholar 

  • Hashimoto H, Kobayashi G, Sakuma R, Fujii T, Hayashi N, Suzuki T, Kanno R, Takano M, Takada J (2014) Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery. ACS Appl Mat Interfaces 6:5374–5378

    Article  CAS  Google Scholar 

  • Hedrich S, Schlomann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157:1551–1564

    Article  CAS  Google Scholar 

  • Hegler F, Posth NR, Jiang J, Kappler A (2008) Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol Ecol 66:250–260

    Article  CAS  Google Scholar 

  • Holmes D, Bonnefoy V (2007) Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, pp 281–307

    Chapter  Google Scholar 

  • Ida C, Sasaki K, Ando K, Blake RC, Saiki H, Ohmura N (2003) Kinetic rate constant for electron transfer between ferrous ions and novel rusticyanin isoform in Acidithiobacillus ferrooxidans. J Biosci Bioeng 95:534–537

    Article  CAS  Google Scholar 

  • Jamieson J, Prommer H, Kaksonen AH, Sun J, Siade AJ, Yusov A, Bostick B (2018) Identifying and quantifying the intermediate processes during nitrate-dependent iron (II) oxidation. Environ Sci Technol 52:5771–5781

    Article  CAS  Google Scholar 

  • Jones JG (1986) Iron transformation by freshwater bacteria. Adv Microb Ecol 9:149–185

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwater. Water Res 38:17–26

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2006) Use of iron- and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater. Water Qual Res J Can 41:117–129

    Article  CAS  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  Google Scholar 

  • Khan AH, Rasul SB, Munir AKM, Habibuddowla M, Alauddin M, Newaz SS, Hussam A (2000) Appraisal of a simple arsenic removal method for groundwater of Bangladesh. J Environ Sci Health Part A 35:1021–1041

    Article  Google Scholar 

  • King DW, Lounsbury HA, Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ Sci Technol 29:818–824

    Article  CAS  Google Scholar 

  • Konhauser KO, Fyfe WS, Ferris FG, Beveridge TJ (1993) Metal sorption and mineral precipitation by bacteria in two Amazonian river systems: Rio Solimões and Rio Negro, Brazil. Geology 21:1103–1106

    Article  CAS  Google Scholar 

  • Lack JG, Chaudhuri SK, Kelly SD, Kemner KM, O’Connor SM, Coates JD (2002) Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Appl Environ Microbiol 68:2704–2710

    Article  CAS  Google Scholar 

  • Lehimas GFD, Chapman JI, Bourgine FP (2001) Arsenic removal from groundwater in conjunction with biological iron removal. J Chart Inst Water Environ Manag 15:190–192

    Article  Google Scholar 

  • Li H, Ye M, Zheng L, Xu Y, Sun S, Du Q, Zhong Y, Ye S, Zhang D (2018) Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. Water Sci Technol 2017:390–403

    Article  CAS  Google Scholar 

  • Liao YH, Liang JR, Zhou LX (2011) Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere 83:295–301

    Article  CAS  Google Scholar 

  • Liu Q, Guo H, Li Y, Xiang H (2013) Acclimation of arsenic-resistant Fe(II)-oxidizing bacteria in aqueous environment. Int Biodeterior Biodegrad 76:86–91

    Article  CAS  Google Scholar 

  • Lovely DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 55:259–287

    Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    CAS  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  CAS  Google Scholar 

  • Lüdecke C, Reiche M, Eusterhues K, Nietzsche S, Küsel K (2010) Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen. Environ Microbiol 12:2814–2825

    Google Scholar 

  • Lutters-Czekalla S (1990) Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source. Arch Microbiol 154:417–421

    Article  Google Scholar 

  • Maa Y, Lin C (2012) Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water. J Hazard Mater 217–218:238–245

    Article  CAS  Google Scholar 

  • Makita H (2018) Iron-oxidizing bacteria in marine environments: recent progresses and future directions. World J Microbiol Biotechnol 34:110

    Article  CAS  Google Scholar 

  • Mishra S, Akcil A, Panda S, Erust C (2018) Biodesulphurization of Turkish lignite by Leptospirillum ferriphilum: effect of ferrous iron, Span-80 and ultrasonication. Hydrometallurgy 176:166–175

    Article  CAS  Google Scholar 

  • Moinier D, Byrne D, Amouric A, Bonnefoy V (2017) The global redox responding RegB/RegA signal transduction system regulates the genes involved in ferrous iron and inorganic sulfur compound oxidation of the acidophilic Acidithiobacillus ferrooxidans. Front Microbiol 8:1277

    Article  Google Scholar 

  • Mouchet P (1992) From conventional to biological removal of iron and manganese in France. J Am Water Works Assoc 84:158–167

    Article  CAS  Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann Rev Microbiol 48:311–343

    Article  CAS  Google Scholar 

  • Nemati M, Webb C (1997) A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnol Bioeng 53:478–486

    Article  CAS  Google Scholar 

  • Nordhoff M, Tominski C, Halama M, Byrne JM, Obst M, Kleindienst S, Behrens S, Kappler A (2017) Insights into nitrate-reducing Fe(II) oxidation mechanisms by analyzing cell-mineral associations, cell encrustation and mineralogy in the chemolithoautotrophic enrichment culture KS. Appl Environ Microbiol 83:e00752-17

    Article  Google Scholar 

  • Ohmura N, Sasaki K, Matsumoto N, Saiki H (2002) Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087

    Article  CAS  Google Scholar 

  • Ojumua TV, Hansford GS, Petersen J (2009) The kinetics of ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture: the effect of temperature. Biochem Eng J 46:161–168

    Article  CAS  Google Scholar 

  • Park D, Lee DS, Park JM, Chun HD, Park SK, Jitsuhara I, Miki O, Kato T (2005) Metal recovery from electroplating wastewater using acidophilic iron oxidizing bacteria: pilot-scale feasibility test. Ind Eng Chem Res 44:1854–1859

    Article  CAS  Google Scholar 

  • Poulain AJ, Newman DK (2009) Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism. Appl Environ Microbiol 75:6639–6646

    Article  CAS  Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genom 10:394

    Article  CAS  Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  CAS  Google Scholar 

  • Rentz J, Turner IP, Ullman JL (2009) Removal of phosphorus from solution using biogenic iron oxide. Water Res 43:2029–2035

    Article  CAS  Google Scholar 

  • Roden EE, Sobolev D, Glazer B, Luther GWI (2004) Potential for microscale bacterial Fe redox cycling at the aerobic–anaerobic interface. Geomicrobiol J 21:379–391

    Article  CAS  Google Scholar 

  • Sasaki K, Ida C, Ando A, Matsumoto N, Saiki H, Ohmura N (2003) Respiratory isozyme, two types of rusticyanin of Acidithiobacillus ferrooxidans. Biosci Biotechnol Biochem 67:1039–1047

    Article  CAS  Google Scholar 

  • Schwertmann U, Cornell RM (2000) The iron oxides in the laboratory: preparation and characterization. Wiley-VCH, New York

    Book  Google Scholar 

  • Sharmin N (2001) Arsenic removal processes on trial in Bangladesh, pp 23–30. http://www.unu.edu/env/Arsenic/Nahid.pdf. Accessed 23 Feb 2018

  • Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu HQ, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651

    Article  CAS  Google Scholar 

  • Shiratori T, Sonta H (1993) Application of iron-oxidizing bacteria to hydrometallurgical flue dust treatment and H2S desulfurization. FEMS Microbiol Rev 11:165–174

    Article  CAS  Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate determining step. Science 167:1121–1123

    Article  CAS  Google Scholar 

  • Singh AL, Singh VK (2018) Assessment of groundwater quality of Ballia district, Uttar Pradesh, India, with reference to arsenic contamination using multivariate statistical analysis. Appl Water Sci 8:95

    Article  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    CAS  Google Scholar 

  • Straub KL, Rainey FA, Widdel F (1999) Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int J Syst Bacteriol 49:729–735

    Article  CAS  Google Scholar 

  • Straub KL, Schonhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378

    Article  CAS  Google Scholar 

  • Sudek LA, Templeton AS, Tebo BM, Staudige H (2009) Microbial ecology of Fe (hydr)oxide mats and basaltic rock from Vailulu’u seamount, American Samoa. Geomicrobiol J 26:581–596

    Article  CAS  Google Scholar 

  • Summers ZM, Gralnick JA, Bond DR (2013) Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4:e00420-12

    Article  CAS  Google Scholar 

  • Tominski C, Heyer H, Lösekann-Behrens T, Behrens S, Kappler A (2018) Growth and population dynamics of the anaerobic Fe(II)-oxidizing and nitrate-reducing enrichment culture KS. Appl Environ Microbiol 84:e02173-17

    Article  Google Scholar 

  • Umbriet WW (1999) The oxidation of metallic iron by Escherichia coli and other common heterotrophs. J Ind Microbiol Biotechnol 22:311–314

    Article  Google Scholar 

  • Van Veen WL, Mulder EG, Deinema MH (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356

    Google Scholar 

  • Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Arsenic in drinking water-problems and solutions. Water Sci Technol 40:69–76

    Article  CAS  Google Scholar 

  • Wang J, Bai J, Xu J, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105

    Article  CAS  Google Scholar 

  • Wang L, Kumeria T, Santos A, Forward P, Lambert MF, Losic D (2016) Iron oxide nanowires from bacteria biofilm as an efficient visible-light magnetic photocatalyst. ACS Appl Mater Interfaces 8:20110–20119

    Article  CAS  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  Google Scholar 

  • Wedepohl HK (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  • Weiss JV, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M, Lilburn T, Bradburne C, Megonigal JP, Emerson D (2007) Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J 24:559–570

    Article  CAS  Google Scholar 

  • Xiang L, Chan LC, Wong JWC (2000) Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 41:283–287

    Article  CAS  Google Scholar 

  • Yayam M (2014) Upward biological contact filtration, chapter 66. In: Nakamoto N, Graham N, Collins R, Gimbel R (eds) Progress in slow sand and alternative biofiltration processes. IWA Publishing, London

    Google Scholar 

  • Zhang S, Yan L, Xing W, Chen P, Zhang Y, Wang W (2018) Acidithiobacillus ferrooxidans and its potential application. Extremophiles 22:563–579

    Article  CAS  Google Scholar 

  • Zhou Q, Gao J, Li Y, Zhu S, He L, Nie W, Zhang R (2017) Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation. Water Sci Technol 76:1347–1359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head and Coordinator Department of Botany, Centre of Advanced Study, Banaras Hindu University, Varanasi for providing necessary facilities. The financial support provided by UGC-RFSMS (F. No. 5-106/2007), New Delhi, is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest in writing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Singh, A.L., Singh, R. et al. Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution. Environmental Sustainability 1, 221–231 (2018). https://doi.org/10.1007/s42398-018-0024-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-018-0024-0

Keywords

Navigation