Impacts of climate change on Fusarium species vis-à-vis adaptation strategies

Abstract

Host-pathogen systems have co-evolved and climate change and climatic variability are impacting agriculture sector including host-pathogen interactions. Species of Fusarium are known to infect and cause diseases in field and plantation crops causing severe yield losses. They are also known to produce mycotoxins which cause health hazards in humans and animals. Fusarium is one of the extensively studied genera with well-defined generic and species structure. Therefore, diagnostics, host pathogen interactions and management practices are aptly clear in majority of the cases. But still a gap exists at our understanding about the virulence level to define races/pathotypes, which makes management of the diseases caused by fusaria very difficult. The problem becomes more aggravated under present circumstances of changing climatic conditions. Although, several bio-control agents are available to manage the diseases, its utilization at field level is still need to be explored. Efforts are required to make the soil suppressive by promotion of in-situ bio-management practices. The present review is presenting current research gaps and way forward under changing climatic conditions for Fusarium species.

This is a preview of subscription content, log in to check access.

References

  1. Ahangar MA, Bhat ZA, Najeeb S, Lone ZA, Sajad H, Dar SH (2014) Bakanae disease: a new threat to rice production under temperate ecology of Kashmir. J Agril Life Sci 1:6

    Google Scholar 

  2. Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum New phytol 184:529–544

    CAS  PubMed  Google Scholar 

  3. Backhouse D, Burgess LW (2002) Climatic analysis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Aust Plant Pathol 31:321–327

    Google Scholar 

  4. Bagga PS (2007) Efficacy of triazole and strobilurin fungicides for controlling fusarium head blight (scab) and brown rust of wheat in Punjab. Indian Phytopathol 60:489–493

    Google Scholar 

  5. Bagga PS, Aujla SS, Kumar V (1997) Current status of research on fusarium head scab of wheat in Punjab, India. Cereal Res Commun 25:795–796

    Google Scholar 

  6. Bancroft J (1876) Report of the board appointed to enquire into the cause of disease affecting livestock and plants. Qld Votes Proc 3:1011–1038

    Google Scholar 

  7. Barakat RM, AL-Masri MI (2012) Enhanced soil solarization against fusarium oxysporum f. sp. lycopersici in the uplands. Int J Agron 2012: 7

  8. Bashyal BM (2018) Etiology of an emerging disease: bakanae of rice. Indian Phytopathol 71:485–494

    Google Scholar 

  9. Bubici G, Kaushal M, Prigigallo MI, Cabanás CG, Jesús Mercado-Blanco JM (2019) Biological control Agents against Fusarium wilt of banana. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00616

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burgess LW (1981) General ecology of the fusaria. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusanium: diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 225–235

  11. Burgess LW, Backhouse D, Summerell BA, Swan LJ (2001) Crown rot of wheat. In: Fusarium: Paul E. Nelson memorial symposium. (eds Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW). St Paul, MN, USA, American Phytopathological Society

  12. CABI (2000) Crop protection compendium. Global module, 2nd edition. CAB International, Wallingford

  13. Cheatham MR, Rouse MN, Esker PD, Ignacio S, Pradel W, Raymundo R, Sparks AH, Forbes GA, Gordon TR, Garrett KA (2009) Beyond yield: plant disease in the context of ecosystem services. Phytopathol 99:1228–1236

    CAS  Google Scholar 

  14. Cook RJ (1981) Fusarium diseases of wheat and other small grains in North America. In: Nelson PE, Tousson TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. Pennsylvania State University Press, University Park, pp 39–52

    Google Scholar 

  15. Desai S, Nene YL, Reddy RAG (1992) Races of Fusarium oxysporum causing wilt in chickpea—serological and electrophoretic variability. Indian Phytopathol 45:421–425

    Google Scholar 

  16. Dubey SC, Priyanka K, Singh V, Singh B (2012) Race profiling and molecular diversity analysis of Fusarium oxysporum f.sp. ciceris causing wilt in chickpea. J Phytopathol 160:576–587

    CAS  Google Scholar 

  17. Dubey SC, Singh B, Gupta O, Saxena DR, Sharma OP, Kohire OD, Anadani VP, Singh RK, Singh SK, Tripathi Aradhika (2017) Management of wilt and root rots of chickpea (Cicer arietinum) using Trichoderma harzianum in India. Indian J Agric Sci 87:1283–1287

    CAS  Google Scholar 

  18. Dubey SC, Singh SR (2008) Virulence analysis and oligonucleotide fingerprinting to detect diversity among Indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Mycopathologia 165:389–406

    CAS  PubMed  Google Scholar 

  19. Dubey SC, Singh SR, Singh B (2010) Morphological and pathogenic variability of Indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Arch Phytopathol Plant Prot 43:174–189

    Google Scholar 

  20. Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum. f. sp. ciceris for integrated management of chickpea wilt. Biol Cont 40:118–127

    Google Scholar 

  21. Dubey SC, Tripathi A, Singh B (2013) Integrated management of Fusarium wilt by combined application of soil and seed dressing formulations of Trichoderma species to increase grain yield of chickpea. Int J Pest Mana 59:47–54

    Google Scholar 

  22. Epp MD (1987) Somaclonal variation in bananas: a case study with Fusarium wilt. Banana and plantain strategies. (Cairns, Australia: ACIAR Proceedings) 21:140–150

  23. Ferrara M, Haidukowski M, Logrieco AF, Leslie JF, Mule G (2019) A CRISPR-Cas9 system for genome editing of Fusarium proliferatum. Sci Rep 9:19836. https://doi.org/10.1038/s41598-019-56270-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum New Phytol 187:920–928

    PubMed  Google Scholar 

  25. Ghini R, Hamada E, Mário José Pedro Júnior, Marengo JA, do Valle Gonçalves RR (2008) Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesq agropec bras Brasília 43:187–194

  26. Haq M, Mia MAT, Rabbi MF, Ali MA (2011) Incidence and Severity of Rice Diseases and Insect Pests in Relation to Climate Change. In: Lal R, Mannava VKS, Faiz SMA, Rahman M, Islam KR (eds) Climate Change and Food Security in South Asia. Springer, Berlin, pp 445–457

  27. Haware MP, Nene YL (1980) Influence of wilt at different stages on the yield loss in chickpea. Trop Grain Legume Bull 19:38–40

    Google Scholar 

  28. Haware MP, Nene YL (1982) Races of Fusarium oxysporum f.sp. ciceri Plant Dis 66:809–810

    Google Scholar 

  29. Honnareddy N, Dubey SC (2006) Pathogenic and molecular characterization of Indian isolates of Fusarium oxysporum f.sp. ciceris causing chickpea wilt. Curr Sci 91:661–666

    CAS  Google Scholar 

  30. Hooker DC, Schaafsma AW, Tamburic-Ilincic L (2002) Using weathervariables pre- and post-heading to predict deoxynivalenol content in winterwheat. Plant Dis 86:611–619

    CAS  PubMed  Google Scholar 

  31. Hossain MA, Latif MA, Kabir MS, Kamal MM, Mian MS, Akter S, Sharma NR (2007) Dissemination of integrated disease management practices through farmers’ participatory field trial. A report on Agricultural Technology Transfer (ATT) Project. Bangladesh Agricultural Research Council, Dhaka – 1215, 27

  32. Imazaki I, Kadota I (2015) Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol Ecol 91:fiv098. https://doi.org/10.1093/femsec/fiv098

    CAS  Article  PubMed  Google Scholar 

  33. IPCC (2018) Global Warming of 1.5 °C.An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (eds. Masson-Delmotte V, P Zhai, H-O Pörtner, D Roberts, J Skea, PR Shukla, A Pirani, W Moufouma-Okia, C Péan, R Pidcock, S Connors, JBR Matthews, Y Chen, X Zhou, MI Gomis, E Lonnoy, T Maycock, M Tignor, T Waterfield)

  34. Jimenez-Diaz RM, Alcala-Jimenez AR, Hervar A, Trapero-Casas JL (1993) Pathogenic variability and host resistance in the Fusarium oxysporum f.sp. ciceri/Cicer arietinum pathosystem. In: Arseniuk E, Goral T, (ed.) Third Proceedings of European seminar: Fusariummycotoxins Taxonomy, Pathogenicity and Host Resistance. Rodzikov, Poland: Plant Breeding and Acclimatization Institute, pp 87–94

  35. Jimenez-Gasco MM, Perez-Artes E, Jimenez-Diaz RM (2001) Identification of pathogenic races 0, 1B/C, 5 and 6 of Fusarium oxysporum f.sp. ciceri with random amplified polymorphic DNA (RAPD). Eur J Plant Pathol 107:237–248

    CAS  Google Scholar 

  36. Khan MK, Pandey A, Athar T, Choudhary S, Deval R, Gezgin S, Hamurcu M, Topal A et al (2020) 3 Biotech 10:172

    PubMed  Google Scholar 

  37. Kappelman AJ (1980) The Fusarium wilt-nematode evaluation programme at Talassee, Alabama Progress through the years. Proc of the Beltwide Cotton Prod. Conf Memphis TN, pp 302–302

  38. Leslie JF, Summerell BA (2006) The fusarium laboratory manual. Blackwell Publishing, Ames, p 387

  39. Link HF (1809) Observations in ordines plantarum natural, dissertation. Magazin der Gesellschaft Naturforschenden Freunde Berlin 3:3–42

  40. Lv H, Cao H, Nawaz MA, Sohail H, Huang Y, Cheng F, Kong Q, Bie Z (2018) Wheat intercropping enhances the resistance of watermelon to Fusarium wilt. Front Plant Sci 9: Article 696

  41. Lv J, Dong Y, Dong K, Zhao Q, Yang Z, Chen L (2020) Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Pl Soil 448:153–164

    CAS  Google Scholar 

  42. Madgwick JW, West JS, White RP, Semenov MA, Townsend JA, Turner JA, Fitt BDL (2011) Impacts of climate change on wheat anthesis and Fusarium ear blight in the UK. Eur J Plant Pathol 130:117–131

    Google Scholar 

  43. Martyn RD (2014) Fusarium wilt of watermelon: 120 years of research. Hortic Rev (Am Soc Hortic Sci) 42:349–442

    Google Scholar 

  44. Matny ON (2015) Fusarium head blight and crown rot on wheat & barley:losses and health risks. Adv Plants Agric Res 2:38–43

    Google Scholar 

  45. McGovern RJ, Vavrina CS, McKay LA (1993) Effect of transplant tray and tomato cultivar on the incidence of Fusarium crown and root rot in tomato transplants. Proc Fla State Hortic Soc 106:173–175

    Google Scholar 

  46. Mes JJ, Weststeijn EA, Herlaar F, Lambalk JJ, Wijbrandi J, Haring MA, Cornelissen BL (1999) Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology 89:156–160

    CAS  PubMed  Google Scholar 

  47. Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum Mol Plant Pathol 10:311–324

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mina Usha B, Arti Dubey SC (2012) Impact of ozone and carbondioxide on wilt disease development in chickpea. Int J Environ Eng Manag 3:373–376

    Google Scholar 

  49. Mina Usha B, Dubey SC (2010) Effect of environmental variables on development of Fusarium wilt in chickpea (Cicer arietinum) cultivars. Indian J Agric Sci 80:231–234

    Google Scholar 

  50. Moore NY (1995) Fusarium wilt of banana: pathogen variability and host-pathogen interaction. PhD thesis. The University of Queensland, 152 pp

  51. Moschini RC, Martínez MI, Sepulcri MG (2013) Modeling and forecasting systems for Fusarium head blight and deoxynivalenol content in wheat in Argentina. Fusarium head blight in Latin America. Springer, Dordrecht, pp 205–227

    Google Scholar 

  52. Moya-Elizondo EA, Rew LJ, Jacobsen BJ, Hogg AC, Dyer AT (2011) Distribution and prevalence of Fusarium crown rot and common root rot pathogens of wheat in Montana. Plant Dis 95:1099–1108

    PubMed  Google Scholar 

  53. Mundkur BB (1936) Resistance of american cottons to fusarium wilt in India. Proc Indian Acad Sci Sect B 3:498–501

    Google Scholar 

  54. Murray G, Brennan J (2009) Estimating disease losses to the Australian wheat industry. Aust Plant Pathol 38:558–570

    Google Scholar 

  55. Naeem M, Iqbal M, Parveen N, Sami-Ul-Allh Abbas Q, Rehman A, Shauket MS (2016) An over view of bakanae disease of rice. Am Eurasia J Agric Environ Sci 16:270–277

    Google Scholar 

  56. Njeru NK, Muthomi JM, Mutegi CK, Wagacha JM (2016) Effect of cropping systems on accumulation of fusarium head blight of wheat inocula in crop residues and soils. J Plant Sci 11:12–21

    CAS  Google Scholar 

  57. Panwar V, Aggarwal A, Paul S, Kumar J, Saharan MS (2016) Distribution dynamics of Fusarium spp. causing Fusarium head blight (FHB) in wheat at different geographical locations in India. South Asian J Exp Biol 6:167–167

    Google Scholar 

  58. Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals: a review. Plant Pathol 44:207–238

    Google Scholar 

  59. Parry DW, Petit TR, Jenkinson P, Lees AK (1994) The cereal Fusarium complex. In: Blakeman P, Williamson B (eds.). Ecology of plant pathogens, pp. 301 – 20. CAB International, Wallingford UK, Parry DW, Jenkinson P, McLeod L, 1995. Fusarium ear blight (scab) in small grain cereals - a review. Plant Path 44: 207–238

  60. Pavlou GC, Vaklounakis DJ, Ligoxigakis EK (2002) Control of root and stemrot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Dis 86:379–382

  61. Pegg KG, Coates LM, O’Neill WT, Turner DW (2019) The epidemiology of fusarium wilt of banana. Front Plant Sci 10:1395. https://doi.org/10.3389/fpls.2019.01395

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pereyra S, Lori GA (2013) Crop residues and their management in the epidemiology of Fusarium head blight. In: Magliano TMA, Chulze SN (eds) Fusarium Head Blight in Latin America. Springer, Dordrecht, pp 143–156

    Google Scholar 

  63. Rao BB, Chowdary SP, Sandeep VM, Rao VUM, Venkateswarlu B (2014) Rising minimum temperature trends over India in recent decades: Implications for agricultural production. Glob Planet Chang 117:1–8

    Google Scholar 

  64. Rathaiah Y, Das GR, Singh KHU (1991) Estimation of yield loss and chemical control of bakanae disease of rice. Oryza 28:509–512

    Google Scholar 

  65. Reddy CS, Laha GS, Prasad MS, Krishnaveni D, Castilla NP, Nelson AD, Savary S (2011) Characterizing multiple linkages between individual diseases, crop health syndromes, germplasm deployment, and rice production situations in India. Field Crops Res 120:241–253

    Google Scholar 

  66. Saabale PR, Dubey SC (2014) Pathogenicity and vegetative compatibility grouping among Indian populations of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Phytoparasitica 42:465–473

    Google Scholar 

  67. Sabburg R, Obanor F, Aitken E, Chakraborty S (2015) Changing fitness of a necrotrophic plant pathogen under increasing temperature. Glob Chang Biol 21:3126–3137

    PubMed  Google Scholar 

  68. Saharan MS (2020) Current status of resistant source to Fusarium head blight disease of wheat: a review. Indian Phytopathol 73:3–9

    Google Scholar 

  69. Saharan MS, Kumar J, Sharma AK, Nagrajan S (2004) Fusarium head blight (FHB) or head scab of wheat-a review. Proc Indian Natl Sci Acad B70 No 3:255–268

    Google Scholar 

  70. Saharan MS, Naef A (2008) Detection of genetic variation among Indian wheat head scab pathogens (Fusarium spp./isolates) with microsatellite markers. Crop Prot 27:1148–1154

    CAS  Google Scholar 

  71. Saharan MS, Naef A, Kumar J, Tiwari R (2007) Characterization of variability among isolates of Fusariumgraminearum associated with head scab of wheat usingDNA markers. Curr Sci 92:230–235

    CAS  Google Scholar 

  72. Salvacion AR, Cumagun CJR, Pangga IB, Magcale-Macandog DB, Cruz PCS, Saludes RB, Solpot TC, Aguilar EA (2019) Banana suitability and Fusarium wilt distribution in the Philippines under climate change. Spat Inf Res 27:339–349

    Google Scholar 

  73. Saremi H, Farrokhi F (2004) Study on bakanae disease of rice and evaluation of cultivars in Gilan and Zanjan provinces, Iran. Proc. Fourth Inter. Iran and Russia Conf. pp 358–364

  74. Schaafsma AW, Hooker DC (2007) Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Int J Food Microbiol 119:116–125

  75. Shah DA, De Wolf ED, Paul P, Madden L (2014) Predicting Fusarium head blight epidemics with boosted regression trees. Phytopathology 104:702–714

    CAS  PubMed  Google Scholar 

  76. Shen Z, Ruan Y, Xue C, Zhong S, Li R, Shen Q (2015) Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant Soil 393:21–33

    CAS  Google Scholar 

  77. Singh KB, Dahiya BS (1973) Breeding for wilt resistance in chickpea. In: Symposium on Problem and Breeding for Wilt Resistance in Bengal Gram. New Delhi, IARI, pp 13–14

  78. Singh NI, Devi RKT, Singh LNK (1996) Withering of growing shoot of rice caused by Fusarium moniliforme Plant Dis Res 11:99–100

    Google Scholar 

  79. Sinha R, Gupta A, Senthil Kumar M (2017) Concurrent Drought Stress and Vascular Pathogen Infection Induce Common and Distinct Transcriptomic Responses in Chickpea. Front Plant Sci 8:333. https://doi.org/10.3389/fpls.2017.00333

    Article  PubMed  PubMed Central  Google Scholar 

  80. Skelsey P, Newton AC (2015) Future environmental and geographic risks of Fusarium head blight of wheat in Scotland. Eur J Plant Pathol 142:133–147

    Google Scholar 

  81. Snyder WC, Hansen HN (1945) The species concept in Fusarium with reference to discolor and other sections. Am J Bot 32:657–666

    Google Scholar 

  82. Summerell BA (2019) Resolving Fusarium: current status of the genus. Annu Rev Phytopathol 57:323–339

    CAS  PubMed  Google Scholar 

  83. Teli B, Chattopadhyay A, Meena SC, Gangwa GP, Pandey SK (2016) Present status of Fusariumhead blight of wheat and barley in India. In: Diseases of wheat and their management (Vaish SS ed), Astral International (P) Ltd., New Delhi 79–92 pp

  84. Thangavelu R, Mostert D, Gopi M, Ganga Devi P, Padmanaban B, Molina AB, Viljioen A (2019) First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on Cavendish banana in India. Eur J Plant Pathol 154:777–786

  85. Tillmann M, von Andreas T, Winter M (2017) Crop rotation effects on incidence and diversity of Fusarium species colonizing stem bases and grains of winter wheat. J Plant Dis Prot 124:121–130

    Google Scholar 

  86. Tramier R, Pionnat JC, Metay C (1983) Epidemiology of Fusarium wilt during propagation of carnation. ISHS Acta Horticulturae 141: II International Symposium on Carnation Culture. Doi:10.17660/Acta Hortic.1983.141.10

  87. Vaughan M, Backhouse D, Del Ponte EM (2016) Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review. World Mycotoxin J 9:685–700

    Google Scholar 

  88. Verheecke-Vaessen C, Diez-Gutierrez L, Renaud J, Mark S, Angel M, Naresh M (2019) Interacting climate change environmental factors effects on Fusarium langsethiae growth, expression of Tri genes and T-2/HT-2 mycotoxin production on oat-based media and in stored oats. Fungal Biol 123:618–624

    CAS  PubMed  Google Scholar 

  89. Viswanathan R, Balaji CG, Selvakumar R, Malathi P, Ramesh Sundar A, Prasanth C, Naveen Chhabra ML, Parameswari B (2017) Epidemiology of Fusarium diseases in sugarcane: a new discovery of same Fusarium sacchari causing two distinct diseases, wilt and Pokkah Boeng. Sugar Technol 19:638–646

    CAS  Google Scholar 

  90. Wang C, Roberts PA (2006) A Fusarium wilt resistance gene in Gossypium barbadense and its effect on root-knot nematode-wilt disease complex. Phytopathology 96:727–734

    CAS  PubMed  Google Scholar 

  91. Wildermuth GB, Thomas GA, Radford BJ, Mcnamara RB, Kelly A (1997) Crown rot and common root rot in wheat grown under different tillage and stubble treatments in southern Queensland, Australia. Soil Tillage Res 44:211–224

    Google Scholar 

  92. Wollenweber HW, Reinking OA (1935) Die Fusarien, ihre Beschreibung, Schadwirkung und Bekampfung. Verlag Paul Parey, Berlin, p 355

    Google Scholar 

  93. Yogen A, Raviv M, Hadar Y, Cohen R, Katan J (2006) Plant waste based composts suppressive to diseases caused by pathogenic Fusarium oxysporum. Eur J Plant Pathol 116:267–276

    Google Scholar 

  94. Zhang X, Halder J, White RP, Hughes DJ, Ye Z, Wang C, Xu R, Gan B, Fitt BDL (2014) Climate change increases risk of Fusarium ear blight on wheat in central China. Ann Appl Biol 164:384–395

    Google Scholar 

  95. Zhu Z, Hao Y, Merghoum M, Bai G, Humphrys G, Cloutier S, Zia X, He Z (2019) Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J 7:730–738

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. C. Dubey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Desai, S., Dubey, S.C. & Prasad, R.D. Impacts of climate change on Fusarium species vis-à-vis adaptation strategies. Indian Phytopathology (2020). https://doi.org/10.1007/s42360-020-00258-3

Download citation

Keywords

  • Fusarium species
  • Wilt
  • Biology
  • Climate variables
  • Current research gaps
  • Way forward