Skip to main content
Log in

Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Two concentrations of Zinc Oxide nanoparticles (ZnO NPs) were applied using three methods i.e., spray, seed treatment and soil inoculation for the management of disease complex of eggplant caused by Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita. The highest increase in plant growth, chlorophyll and carotenoid contents was obtained by spray of NPs followed by seed treatment and soil inoculation. Plants sprayed with 200 ppm NPs resulted in higher increase in plant growth, and higher reduction in galling and nematode multiplication. 15 and 8 days early flowering and fruiting were observed in plants sprayed with 200 and 100 ppm NPs, respectively, over seed treatments. Scanning electron microscopy revealed that ZnO NPs had an adverse effect on cell wall/body wall of test pathogens. Wilt and blight indices was three and five when inoculated with single pathogen and inoculated together, respectively. Disease index was reduced to one when plants sprayed with 200 ppm NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA, De Araujo MJ (2006) Response of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256

    Article  Google Scholar 

  • Dimapilis EAS, Hsu C-S, Mendoza RMO, Lu M-C (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28:47–56

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manango´n E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125. https://doi.org/10.1007/s11051-012-1125-9

    Article  CAS  Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56:578–586

    Article  Google Scholar 

  • Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Melendi P, Fernandez Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kushwah T, Vishwakarma A, Yadav S (2015) Optimization of ZnO-NPs to investigate their safe application by assessing their effect on soil nematode Caenorhabditis elegans. Nanoscale Res Lett 10:303

    Article  PubMed Central  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of Bacterial Wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  CAS  PubMed  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Jameel A, Chaube HS (2006) Variabilty in phomopsis blight pathogen ((Phomopsis vexans(sacc. & Syd.) Harter). Indian Phytopath 59:439–444

    Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Khan M, Siddiqui ZA (2017) Interactions of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexans on eggplant in sand mix and fly ash mix soils. Sci Hortic 225:177–184. https://doi.org/10.1016/j.scienta.2017.06.016

    Article  Google Scholar 

  • Laware SL, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl Sci 3(7):874–881

    CAS  Google Scholar 

  • Li S, Yu Y, Chen J, Guo B, Yang L, Din W (2016) Evaluation of the antibacterial effects and mechanism of action of protocatechualdehyde against Ralstonia solanacearum. Molecules 21(6):754. https://doi.org/10.3390/molecules21060754

    Article  CAS  Google Scholar 

  • Lilley CJ, Kyndt T, Gheysen G (2011) Nematode resistant GM crops in industrialized and developing countries. In: Jones JT, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Heidelberg, pp 517–541

    Chapter  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Muthuraman P, Ramkumar K, Kim DH (2014) Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl Biochem Biotechnol 174:2851–2863

    Article  CAS  PubMed  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You MW, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980. https://doi.org/10.1021/nn4034794

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Riker AJ, Riker RS (1936) Introduction to research on plant diseases. John’s Swift Co., New York

    Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:1–8. https://doi.org/10.1155/2014/925494 (Article ID 925494)

    Article  CAS  Google Scholar 

  • Sávoly Z, Hrács K, Pemmer B, Streli C, Záray G, Nagy PI (2016) Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects. Environ Sci Pollut Res 23:9669–9678

    Article  Google Scholar 

  • Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809

    Article  CAS  PubMed  Google Scholar 

  • Schaad NW (1992) Laboratory guide for the identification of plant pathogenic bacteria. 2nd edn. Published by Ibdchb. ISBN 10:8123925530/ISBN 13:9788123925530

  • Sharma, P.D. (2010). Microbiology 3rd ed. Rastogi publication, Meerut, India. 716 pp.ISBN 81-7133-935-2

  • Sood ML, Kalra S (1977) Histochemical studies on the body wall of nematodes: Haemonchus contortus (Rud., 1803) and Xiphinema insigne Loos, 1949. Zeitschrift für Parasitenkunde 51:265–273

    Article  CAS  PubMed  Google Scholar 

  • Southey JF (1986) Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture, Fisheries and Food, Her Majesties Stationary Office, London

    Google Scholar 

  • Taheri M, Qarache HA, Qarache AA, Yoosefi M (2015) The effects of Zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J 1(2):17–19

    Article  Google Scholar 

  • Welch RM, Webb MJ, Loneragan JF (1982) Zinc in membrane function and its role in phosphorus toxicity. In: Scaife A (ed) Proceedings of the ninth plant nutrition colloquium. Warwick, UK. CAB International, Wallingford, pp 710–715

    Google Scholar 

  • Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2008) Antibacterial activity of ZnO powder with crystallographic orientation. J Mater Sci Mater Med 19:1407–1412

    Article  PubMed  Google Scholar 

  • Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol–gel method. Environ Sci Technol 43:2905–2910

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Junior Research Fellowship award to first author by University Grants Commission New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaki A. Siddiqui.

Ethics declarations

Conflict of interest

No conflict of interest has been declared by authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Siddiqui, Z.A. Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathology 71, 355–364 (2018). https://doi.org/10.1007/s42360-018-0064-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-018-0064-5

Kew words

Navigation