Skip to main content
Log in

Understanding photoreception in fungi and its role in fungal development with focus on phytopathogenic fungi

  • Review Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Like other environmental factors, light can influence various developmental processes in fungal species. Most of the fungi can respond to different wavelengths of light such as blue (475 nm), near UV (300–380 nm) and red light (650 nm). Blue light has been found to be the most associated light quality with fungal development. The most commonly investigated photoregulatory receptors in fungi are the white collar complex proteins (WC-1, WC-2) in the light oxygen voltage domain which sense and regulate the effects of blue light on fungal development and reproduction. The sequencing of several fungal genomes has led to the identification of other photoreceptor genes and their products, such as phytochromes (for red light), cryptochromes (for blue light) and blue and green light absorbing rhodopsins in some ascomycetes and basidiomycetes. Although similar types of regulatory mechanisms appear to be involved in signalling light responses in fungal species, nevertheless, there may be other hitherto undiscovered mechanisms responsible for regulating light perception. It warrants further investigations on photoreception in more fungal species including plant pathogenic fungi to better understand the underlying mechanisms controlling light perception at the metabolic level. Certain circadian rhythms have been found to play crucial role in fungal perception and adaptation to light. The information has led to the use of certain photoselective materials for control of some plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams GC, Gottwald TR, Leach CM (1986) Environmental factors initiating liberation of conidia of powdery mildews. Phytopathology 76:1239–1245

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, New York

    Google Scholar 

  • Alam MS, Begum MF, Sarkar MA, Islam MR, Alam MS (2001) Effect of temperature, light and media on growth, sporulation, formation of pigments and pycnidia of Botryodiplodia theobromae Pat. Pak J Biol Sci 4:1224–1227

    Article  Google Scholar 

  • Atalia MM, Hassanein NM, El-Beih A, Youssef YA (2004) Effect of fluorescent and UV light on mycotoxin production under different relative humidities in wheat grains. Int J Agric Biol 6:1004–1012

    Google Scholar 

  • Avalos J, Schrott EL (1990) Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett 66:295–298

    Article  CAS  Google Scholar 

  • Avery PB, Faull J, Simmonds MS (2004) Effect of different photoperiods on the growth, infectivity and colonization of Trinidadian strains of Paecilomyces fumosoroseus on the greenhouse white fly, Trialeurodes vaporariorum, using a glass slide bioassay. J Insect Sci 4:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Babadoost M, Johnston MR (1998) Sporulation of Drechslera graminea on barley straw extract agar. Mycologia 90:63–68

    Article  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayram O, Biesemann C, Krappmann S, Galland P, Braus CH (2008) More than a repair enzyme: Aspergillus nidulans photolyase-like Cry-A is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berrocal-Tito GM, Esquivel-Naranjo EU, Horwitz BA, Herrera-Estrella A (2007) Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction. Eukaryot Cell 6:1682–1692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Betina V (1995) Photoinduced conidiation in Trichoderma viride. Folia Microbiol 40:219–224

    Article  CAS  Google Scholar 

  • Bluhm BH, Dunkle LD (2008) PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development. Fungal Genet Biol 45:1364–1375

    Article  PubMed  CAS  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fische R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Brook PJ (1969) Stimulation of ascospore release in Venturia inaequalis by far red light. Nature 222:390–392

    Article  Google Scholar 

  • Brook PJ (1975) Effect of light on ascospore discharge by five fungi with bitunicate asci. New Phytol 74:84–92

    Article  Google Scholar 

  • Brunner M, Kaldi K (2008) Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol Microbiol 68:225–262

    Article  CAS  Google Scholar 

  • Campbell MA, Medd RW, Brown JB (2003) Optimizing conditions for growth and sporulation of Pyrenophora semeniperda. Plant Pathol 52:448–454

    Article  Google Scholar 

  • Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar complex. PLoS One 8:e84223. https://doi.org/10.1371/journal.pone.0084223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlile MJ (1965) The photobiology of fungi. Annu Rev Plant Physiol 16:175–202

    Article  CAS  Google Scholar 

  • Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martinez-Hernandez P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross talk between a fungal blue light perception system and cyclic AMP signalling pathway. Eukaryot Cell 5:499–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheong KK, Strub C, Montet D, Durand N, Alter P, Meile JC, Schorr-Galindo S, Fontana A (2016) Effect of different light wavelengths on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae. Fungal Biol 120:745–751

    Article  PubMed  CAS  Google Scholar 

  • Cigsar I (1996) The effect of UV-absorbing polyethylene film to the progress of fungal diseases of greenhouse tomato. Int J Food Agric Econ 9:1–2

    Google Scholar 

  • Cohen Y, Vaknin M, Ben-Naim Y, Rubin AE (2013) Light suppresses sporulation and epidemics of Peronospora belbahrii. PLoS ONE 8:e81282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooperman CJ, Jenkins SF (1986) Conditions influencing growth and sporulation of Cercospora asparagi and Cercospora blight development in Asparagus. Phytopathology 76:617–622

    Article  Google Scholar 

  • Correa A, Lewis ZA, Greene AV, March U, Gomer RH, Bell-Pedersen D (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci USA 100:13597–13602

    Article  PubMed  CAS  Google Scholar 

  • Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6:725–736

    Article  PubMed  CAS  Google Scholar 

  • Corrochano LM (2011) Fungal photobiol: a synopsis. IMA Fungus 2:25–28

    Google Scholar 

  • Corrochano LM (2015) Perception in fungi sensing light and other signals. Botany 2015 (Abstract ID: 879)

  • Costa HS, Robb KL, Wilen CA (2001) Increased persistence of Beuuveria bassiana spore viability under high ultraviolet-blocking greenhouse plastic. Hort Sci 36:1082–1084

    Google Scholar 

  • Crous P, Slippers B, Wingfield M, Rheeder J, Marasas W, Philips A, Alves A, Burgess T, Barber T, Groenewald J (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahalberg KR, Etten J (1982) Physiology and biochemistry of fungal sporulation. Ann Rev Phytopathol 20:281–301

    Article  Google Scholar 

  • Daub ME, Herrero S, Chung KR (2005) Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett 252:197–206

    Article  PubMed  CAS  Google Scholar 

  • De Cal A, Melgarejo P (1999) Effects of long-wave UV light on Monolinia growth and identification of species. Plant Dis 83:62–65

    Article  Google Scholar 

  • Devlin PF (2002) Signs of the time: environmental input to the circadian clock. J Exp Bot 53:1535–1550

    Article  PubMed  CAS  Google Scholar 

  • Diaz BM, Fereres A (2007) Ultraviolet-blocking materials as a physical barrier to control insect pests and plant pathogens in protected crops. Pest Technol 1:85–95

    Google Scholar 

  • Diorio LA (1996) Effect of light and glucose on the aphothecial development of Lodophanus carneus (Fungi, Ascomycotina). Rev Argent Microbiol 28:63–72

    PubMed  CAS  Google Scholar 

  • Dong W, Buck JW (2011) Effect of light on in vivo urediniospores germination, lesion development and sporulation of Puccinia hemerocallidis on daylily and Puccinia pelargoniizonalis on geranium. Mycologia 103:1277–1283

    Article  PubMed  Google Scholar 

  • Dong W, Tang X, Yu Y, Nilsen R, Kim R, Griffith J, Amold J, Schuttler HB (2008) Systems biology of the clock in Neurospora crassa. PLoS ONE 3:e3105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Estrada AF, Avalos J (2009) Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J Mol Biol 387:59–73

    Article  PubMed  CAS  Google Scholar 

  • Friedl MA, Kubicek CB, Druzhinina IS (2008a) Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol 74:245–250

    Article  PubMed  CAS  Google Scholar 

  • Friedl MA, Schmoll M, Kubicek CB, Druzhinina IS (2008b) Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology 154:1229–1241

    Article  PubMed  CAS  Google Scholar 

  • Frochlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    Article  Google Scholar 

  • Galagan JE (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez J, Brunk M, Avalos J, Terpitz U (2015) The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep. https://doi.org/10.1038/srep07798

    Article  PubMed  PubMed Central  Google Scholar 

  • Glienke C, Pereira OL, Stringari D, Fabris J, Kawa-Cordeiro V, Galli-Terasawa L, Cannington J, Shivas RG, Groenewald JZ, Crous PW (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with citrus black spot. Persoonia 26:47–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greene AV, Keller N, Haas H, Bell-Pedersen D (2003) A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell 2:231–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defences in Arabidopsis: phytochrome signalling controls systemic acquired resistance rather than local defence. Plant Physiol 147:790–801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunasekara TS, Paul ND, Ayers PG (1997) The effect of ultraviolet-B (UV-B :290-320 nm) radiation on blister blight disease of tea (Camellia sinensis). Plant Pathol 46:179–533

    Article  Google Scholar 

  • Haggblom P, Unestam T (1979) Blue light inhibits mycotoxin production and increases total lipids and pigmentation in Alternaria alternata. Appl Environ Microbiol 38:1074–1077

    PubMed  PubMed Central  CAS  Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    Article  PubMed  CAS  Google Scholar 

  • Heintzen C (2012) Plant and fungal photopigments. WIREs Membr Transp Signal 1:411–432

    Article  CAS  Google Scholar 

  • Heintzen C, Liu Y (2007) The Neurospora crassa circadian clock. Adv Genet 58:25–66

    PubMed  CAS  Google Scholar 

  • Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella A, Horwitz BA (2007) Looking through the eyes of fungi: molecular genetics of photoreception. Mol Microbiol 64:5–15

    Article  PubMed  CAS  Google Scholar 

  • Hilderbrand PD, Sutton JC (1984) Interactive effects of the dark period, humid period, temperature, and light on sporulation of Peronospora destructor. Phytopathology 74:1444–1449

    Article  Google Scholar 

  • Hillman BL, Shapira R, Nuss DL (1990) Hypovirulence-associated suppression of host functions in Cryptonectria parasitica can be partially relieved by high light intensity. Phytopathology 80:950–956

    Article  Google Scholar 

  • Honda Y, Yunoki T (1977) Control of Sclerotinia disease of greenhouse eggplant and cucumber by inhibition of development of apothecia. Plant Dis Report 61:1036–1040

    Google Scholar 

  • Honda Y, Toki T, Yunoki T (1977) Control of gray mould of greenhouse cucumber and tomato by inhibition of sporulation. Plant Dis Report 61:1041–1044

    Google Scholar 

  • Hubballi M, Nakkeeran S, Raguchander T, Anand T, Samiyappan R (2010) Effect of environmental conditions on growth of Alternaria alternata causing leaf blight of Noni. World J Agric Sci 6:171–177

    Google Scholar 

  • Humpherson-Jones FM, Cooke RC (1977) Morphogenesis in sclerotium-forming fungi. I. Effects of light on Sclerotinia sclerotiorum, Sclerotium delphinii and S. rolfsii. New Phytol 78:171–180

    Article  Google Scholar 

  • Idnurm A, Heitman J (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95. https://doi.org/10.1371/journal.pbio.0030095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Idnurm A, Rodriguea-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP, Heitman J (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci USA 103:4546–4551

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaac S (1995) Moulds, mildews and other fungi are often found in shaded and dark situations—is their development influenced by light? Mycologist 9:41–42

    Article  Google Scholar 

  • Jofffe AZ, Lisker N (1969) Effects of light, temperature, and pH value on aflatoxin production in vitro. Appl Microbiol 18:517–518

    Google Scholar 

  • Khan TN (1971) Effect of light on sporulation in Drechslera tritici-repentis. Trans Br Mycol Soc 56:309–311

    Article  Google Scholar 

  • Komon-Zelazowska M, Neuhof T, Dieckmann R, Dohren H, Herrera-Estrella A, Kubicek CP, Druzhinina I (2007) Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell 6:2332–2342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kritsky MS, Belozerskaya TA, Sokolovsky VY (2005) Photoreceptor apparatus for the fungus Neurospora crassa. Mol Biol 39:602–607

    Article  CAS  Google Scholar 

  • Kuratani M, Tanaka K, Terashima K, Muraguchi H, Nakazawa T, Nakahori K, Kamada T (2010) The dst2 gene essential for photomorphogenesis of Coprinopsis cinerea encodes a protein with a putative FAD-binding-4 domain. Fungal Genet Biol 47:152–158

    Article  PubMed  CAS  Google Scholar 

  • Leach CM (1962) Sporulation of diverse species of fungi under near-ultraviolet radiation. Can J Bot 40:151–161

    Article  Google Scholar 

  • Leach CM (1972) An action spectrum for light- induced sexual reproduction in the ascomycete fungus Leptosphaerulina trifolii. Mycologia 64:475–490

    Article  Google Scholar 

  • Leach CM, Trione EJ (1966) Action spectra for light-induced sporulation of the fungi Pleospora herbarum and Alternaria dauci. Photochem Photobiol 5:621–630

    Article  CAS  Google Scholar 

  • Lee K, Singh P, Chang WC, Ash J, Kim TS, Hang L, Park S (2006) Light regulation of asexual development in the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 43:693–706

    Google Scholar 

  • Levy Y, Cohen Y (1983) Differential effect of light on spore germination of Exserohilum turcicum on corn leaves and corn leaf impressions. Phytopathology 73:249–252

    Article  Google Scholar 

  • Linden H, Macino G (1997) White collar-2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J16:98–109

    Article  Google Scholar 

  • Lokhandwala J, Hopkins HC, Rodriguez-Iglesias A, Dattenbock C, Schmoil M, Zoltowski BD (2014) Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionary conserved pathway integrating light and oxidative stress. Structure 23:116–125

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lopez A, Koller M, Herb C, Scharer H-J (2014) Influence of light management on the sporulation of downy mildew on sweet basil. Acta Hortic. https://doi.org/10.17660/ActaHortic.2014.1041.24

    Article  Google Scholar 

  • Lucas JA, Kendrick RE, Givan CV (1975) Photocontrol of fungal spore germination. Plant Physiol 56:847–849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manning WJ (1995) Climate change: potential effects of increased atmospheric carbon dioxide, ozone, and ultraviolet-B radiation on plant diseases. Environ Pollut 88:219–245

    Article  PubMed  CAS  Google Scholar 

  • Marsh PB, Taylor EE, Bassler MM (1959) A guide to the literature of certain effects of light on fungi. Plant Dis Report Suppl 261:251–312

    Google Scholar 

  • Miller OK (1967) The role of light in the fruiting of Punus fragilis. Can J Bot 45:1939–1943

    Article  Google Scholar 

  • Moore-Lanbecker E, Shropshire W (1982) Effects of aeration and light on apothecia, sclerotia, and mycelia growth in the discomycete Pyronema domesticum. Mycologia 74:1000–1013

    Article  Google Scholar 

  • Nagy P, Fischl G (2002) Effect of UV and visible light irradiation on mycelial growth and sclerotium formation of Sclerotinia sclerotiourm. Acta Phytopathol Entomol Hung 37:83–89

    Article  Google Scholar 

  • Nigel DP, Rob JJ, Taylor A, Wargent JJ, Moore JP (2005) The use of wavelength-selective plastic cladding materials in horticulture: understanding the crop and fungal responses through the assessment of biological spectral weighting functions. Photochem Photobiol 81:1052–1060

    Article  CAS  Google Scholar 

  • Nordskog B, Gadoury DM, Seem RC, Hermansen A (2007) Impact of diurnal periodicity, temperature and light on sporulation of Bremia lactucae. Phytopathology 97:979–986

    Article  PubMed  Google Scholar 

  • Ohmori K, Nakaiima M (1970) Effect of light on sporulation of Alternaria kikuchiana Tanaka. Ann Phytopathol Soc Jpn 36:11–16

    Article  Google Scholar 

  • Onesirosan PT (1978) Factors affecting sporulation by Phomopsis pheseolorum. Mycopathologia 64:23–27

    Article  Google Scholar 

  • Peries OS (1962) Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski. Ann Appl Biol 50:211–224

    Article  Google Scholar 

  • Purschwitz J, Muller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571

    Article  PubMed  CAS  Google Scholar 

  • Rangel DEN (2016) Visible light during growth enhances conidial tolerance to different stress conditions in fungi. Project Report. IP&D, UNIVAP, Brazil

  • Raymond PJ, Bockus WW, Norman BL (1985) Tan spot of winter wheat: procedures to determine host response. Phytopathology 75:686–690

    Article  Google Scholar 

  • Reuveni R, Raviv M (1997) Control of downy mildew in greenhouse-grown cucumbers using blue photoselective polyethylene sheets. Plant Dis 81:999–1094

    Article  Google Scholar 

  • Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roden LC, Ingle RA (2009) Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21:2546–2552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roenneberg T, Merrow M (1999) Circadian systems and metabolism. J Biol Rhythms 14:449–459

    Article  PubMed  CAS  Google Scholar 

  • Roger C, Tivoli B (1996) Effect of culture medium, light and temperature on sexual and asexual reproduction of four strains of Mycosphaerella pinodes. Mycol Res 100:304–306

    Article  Google Scholar 

  • Ruger-Herreros C, Rodriguez-Romero J, Fernandez-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Roldan MC, Garre V, Guarro J, Marine M, Roncerro MI (2008) Role of the white collar-1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell 7:1227–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rumbolz J, Wirtz S, Kicassemeyer H-H, Guggenheim R, Schäfer E, Büche C (2002) Sporulation of Plasmopara viticola: differentiation and light regulation. Plant Biol 4:413–422

    Article  Google Scholar 

  • Sanchez-Arregui A, Perez-Martinez AS, Herrera-Estrella A (2012) Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness. Eukaryot Cell 11:30–41

    Article  CAS  Google Scholar 

  • Sasaki T, Honda Y, Umekawa M, Nemoto M (1985) Control of certain diseases of greenhouse vegetables with ultraviolet-absorbing vinyl film. Plant Dis 69:530–539

    Article  Google Scholar 

  • Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4:1998–2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuerger AC, Brown CS (1997) Spectral quality affects disease development of three pathogens on hydroponically grown plants. Hort Sci 32:96–100

    CAS  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh UP, Singh RB (1987) Effect of light of different wavelengths on apothecium formation in Sclerotinia sclerotiorum. J Plant Dis Prot 94:500–508

    Google Scholar 

  • Sommer T, Chambers JA, Eberle J, Lauter FR, Russo VE (1989) Fast light regulated genes of Neurospora crassa. Nucleic Acids Res 17:5713–5723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Y-Y, Qi Y-L, Cai L (2012) Induction of sporulation in plant pathogenic fungi. Mycology 3:195–200

    CAS  Google Scholar 

  • Tan KK, Epton AH (1973) Effect of light on the growth and sporulation of Botrytis cinerea. Trans Br Mycol Soc 61:145–157

    Article  Google Scholar 

  • Tatiana TMS, Rodrigues LA, Dhingra OD, Eduardo SGM (2010) In vitro production of conidia of Alternaria solani. Trop Plant Pathol 35:1–8

    Google Scholar 

  • Terashima K, Yuki K, Muraguchi H, Akiyama M, Kamada T (2005) The dst1 gene involved in mushroom photomorphogenesis of Coprinus cinereus a putative photoreceptor for blue light. Genetics 171:101–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timberlake WE (1980) Developmental gene regulation in Aspergillus nidulans. Dev Biol 8:497–510

    Article  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol 85:1259–1277

    CAS  Google Scholar 

  • Toussoun TA, Weinhold AR (1967) Light requirement and light inhibition of sexual reproduction in Fusarium solani f. sp. cucurbitae race 2. Can J Bot 45:951–954

    Article  Google Scholar 

  • Tudzynski B (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl Microbiol Biotechnol 52:298–310

    Article  PubMed  CAS  Google Scholar 

  • Vakalounakis DJ (1991) Control of early blight of greenhouse tomato caused by Alternaria solani by inhibiting sporulation with ultraviolet-absorbing vinyl film. Plant Dis 75:795–797

    Article  Google Scholar 

  • Vakalounakis DJ (1992) Control of fungal diseases of greenhouse tomato under long-wave infrared-absorbing plastic film. Plant Dis 76:43–46

    Article  Google Scholar 

  • Vakalounakis DJ, Christias C (1981) Sporulation in Alternaria cichorri is controlled by a blue and near ultraviolet reversible photoreaction. Can J Bot 59:626–628

    Article  Google Scholar 

  • Van der Aa HA (1973) Studies on Phyllosticta I. Stud Mycol 5:1–10

    Google Scholar 

  • Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae J-C, Oh B-T (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350

    Article  PubMed  CAS  Google Scholar 

  • Veluchamy S, Rollins JA (2008) A CRY-DASH type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A specific effects on development. Fungal Genet Biol 45:1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Wang A-W, Yamanouchi U, Katayose Y, Sasaki T, Yano M (2001) Expression of the Pib rice—blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences. Plant Mol Biol 47:653–661

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li N, Li J, Dunlap JC, Trail F, Townsend JP (2016) The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa. mBio. https://doi.org/10.1128/mbio.02148-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Weyman PD, Pan Z, Feng Q, Gilchrist DG, Bostock RM (2006) A circadian rhythm-regulated tomato genes is induced by arachidonic acid and Phytophthora infestans infection. Plant Physiol 140:235–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willocquet L, Colombet D, Rougier M, Fargues J, Clerjeau M (1996) Effects of radiation, especially ultraviolet B, on conidial germination and mycelia growth of grape powdery mildew. Eur J Plant Pathol 102:441–449

    Article  Google Scholar 

  • Wright BE (1979) Causality in biological systems. Trends Biochem Sci 4:110–111

    Article  Google Scholar 

  • Xu LL, Li F, Xie HY, Liu XZ (2009) A novel method for promoting conidial production by a nematophagous fungus, Pochonia chlamydospora AS6.8. World J Microbiol Biotechnol 25:1989–1994

    Article  Google Scholar 

  • Yarwood CE (1936) The diurnal cycle of powdery mildew Erysiphe polygoni. J Agric Res 52:645–657

    Google Scholar 

  • Yu SM, Ramkumar G, Lee YH (2013) Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants. J Appl Microbiol 115:509–516

    Article  PubMed  CAS  Google Scholar 

  • Zhu P, Zhang C, Xiao H, Wang Y, Toyoda H, Xu L (2013) Exploitable regulatory effects of light on growth and development of Botrytis cinerea. J Plant Pathol 95:509–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarlochan S. Thind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thind, T.S., Schilder, A.C. Understanding photoreception in fungi and its role in fungal development with focus on phytopathogenic fungi. Indian Phytopathology 71, 169–182 (2018). https://doi.org/10.1007/s42360-018-0025-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-018-0025-z

Keywords

Navigation