Luminescence Properties of Si4+-doped LiZnPO4:Eu3+ and Application in the Development of Latent Fingermarks


Si4+ and Eu3+ co-doped LiZnPO4 phosphors (LZPS:Eu3+) with red luminescence were prepared by high temperature solid-state reaction. The maximum photoluminescence intensity is achieved at the Eu3+ content of 12% (molar concentration). The study also investigated the effect on luminescent properties of LiZnPO4:Eu3+ by the introduction of Si4+ into the host to substitute P5+. The Eu3+ emission intensity at 592 nm and 612 nm is enhanced by 105% and 108%, respectively. Decreasing the amount of Eu3+ significantly reduces the raw material costs. The phosphor is efficiently excited under 395 nm and 254 nm ultraviolet radiation, and is used as the red component in white light-emitting diodes (WLEDs) or fluorescent lamps. The excitation spectra consist of a broad band extending 200–280 nm and a series of sharp peaks extending 310–500 nm, centered at 395 nm, which corresponds to the charge transfer band of O2− → Eu3+ and the f → f transition of Eu3+, respectively. The study applies this distinctly bright phosphor in the detection and imaging of lipid fingermarks on common non-porous and semi-porous substrates such as colored paper, glass, porcelain, and leather, etc. All results indicate that the LZPS:Eu3+ phosphor is an ideal detection powder for background interference reduction due to its high fluorescence brightness which offers high contrast images, which is applicable to the development of fingermarks on the common non-porous and semi-porous substrates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    C. Champod, C. Lennard, P. Margot, Fingerprints and Other Ridge Skin Impressions (CRC Press, Boca Raton, 2004)

    Google Scholar 

  2. 2.

    E.R. Menzel, K.E. Fox, J. Forensic Sci. 25, 150 (1980)

    CAS  Article  Google Scholar 

  3. 3.

    M. Stoilovic, C. Lennard, Fingerprint Detection and Enhancement (Australian Federal Police, Canberra, 2006)

    Google Scholar 

  4. 4.

    J. Zhou, Z.G. Xia, J. Lumin. 146, 22 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    S.L. Yuan, Y.X. Yang, X.H. Zhang, Opt. Lett. 33, 2865 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    D.L. Geng, M.M. Shang, Y. Zhang, Dalton Trans. 42, 15372 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    E.R. Menzel, K.E. Mitchell, J. Forensic Sci. 35, 35 (1990)

    CAS  Google Scholar 

  8. 8.

    J.P. Caldwell, W. Henderson, N.D. Kim, J. Forensic Sci. 46, 1332 (2001)

    CAS  Article  Google Scholar 

  9. 9.

    E.R. Menzel, J.R. Schwierking, L.W. Menzel, J. Forensic Sci. 55, 189 (2005)

    Google Scholar 

  10. 10.

    L. Liu, Y.C. Zhai, J.K. Zheng, Chin. J. App. Chem. 26, 396 (2009)

    CAS  Google Scholar 

  11. 11.

    L. Li, X.M. Yuan, X.B. Xiong, Forensic Sci. Technol. 2, 14 (2010)

    CAS  Google Scholar 

  12. 12.

    X.B. Xiong, X.M. Yuan, J.Q. Song, New Chem. Mater. 43, 199 (2015)

    CAS  Google Scholar 

  13. 13.

    R.L. Ma, E. Bullock, P. Maynard, Forensic Sci. Int. 207, 145 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    R.L. Ma, R. Shimmon, A. McDonagh, Forensic Sci. Int. 217, 23 (2011)

    Article  Google Scholar 

  15. 15.

    J. Wang, T. Wei, X.Y. Li, Angew. Chem. Int. Ed. 53, 1616 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    L. Liu, Z.L. Zhang, L.M. Zhang, Forensic Sci. Int. 183, 45 (2009)

    CAS  Article  Google Scholar 

  17. 17.

    X.B. Xiong, X.M. Yuan, G.X. Yin, J. Funct. Mater. 20, 2843 (2012)

    Google Scholar 

  18. 18.

    X.B. Xiong, X.M. Yuan, J.Q. Song, Appl. Spectrosc. 70, 995 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    C.L. Chun, R.X. Zhi, G.Y. Guo, T.S. Chan, R.S. Liu, J. Am. Chem. Soc. 132, 3021 (2010)

    Google Scholar 

  20. 20.

    X. Li, L. Guan, X.N. Li, J.W. Wen, Z.P. Yang, Powder Technol. 200, 12 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    D.K. Yim, H.J. Song, I.S. Cho, J.S. Kim, K.S. Hong, Mater. Lett. 65, 1666 (2011)

    CAS  Article  Google Scholar 

  22. 22.

    L. Shi, Y.L. Huang, H.J. Seo, J. Phys. Chem. A 114, 6927 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    T.S. Chan, R.S. Liu, I. Baginskiy, Chem. Mater. 20, 1215 (2008)

    CAS  Article  Google Scholar 

  24. 24.

    C.M. Ouyang, S. Ma, Y. Rao, X.M. Zhou, X.Z. Zhou, Y.X. Li, J. Rare Earth. 30, 637 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    X.B. Xiong, X.M. Yuan, J.Q. Song, J. Chin. Ceram. Soc. 44, 340 (2016)

    CAS  Google Scholar 

  26. 26.

    S.A. Bhat, S.A.U.I. Islam, M. Faizan, M. Ikram, Optik. 181, 836 (2019)

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the 2020 Research Project “Study on photoluminescence properties of rare earth ions doped phosphate phosphor and its application in fingermark development” of Hubei University of Police (HJ2020ZD04).

Author information



Corresponding author

Correspondence to Jiangchun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Li, J. Luminescence Properties of Si4+-doped LiZnPO4:Eu3+ and Application in the Development of Latent Fingermarks. Trans. Electr. Electron. Mater. 22, 67–72 (2021).

Download citation


  • Development of fingermarks
  • Image
  • Phosphors
  • Substrates