CuO Modified CaTiO3 for NTCR Thermistor Application


CuO modified CaTiO3 ceramics exhibit logarithmic increase of resistance with decreasing temperature, which makes the compound well suited for use as a negative temperature coefficients resistance thermistor material in temperature sensing device applications. The source powder production, the experimental set-up, the process parameters and the resulting properties for each are presented and compared. Ca1−XCuXTiO3 (0.1, 0.3, 0.5 and 0.7) synthesized by High Energy Ball Mill. The phase purity of the source powder and the films was assessed by X-ray diffraction. The electrical properties were analysed by measuring the resistance–temperature characteristics. Steinhart and Hart model and time response analysis used for the verification and potential towards the thermistor industry. Experimental result shows potential of all samples in thermistor industry because of exponential electrical resistance with temperature. Time response analysis revels materials response potential to temperature also variation of response time due to effect of doping concentration variation. The sensitivity (β value found to be in the range of 4482–8001 K which is comparable to other potential thermistor industry material already in use. The aim of this experiment to introduce new thermistor material with matching electrical parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    L.H. Oliveira, A.P. de Moura, F.A. La Porta, I.C. Nogueira, E.C. Aguiar, T. Sequinel, I.L.V. Rosa, E. Longo, J.A. Varela, Mater. Res. Bull. 81, 1 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    M.S. Khalil, F.F. Hammad, Egypt. J. Sol. 25, 175 (2002)

    Google Scholar 

  3. 3.

    B. Cheng, Y.-H. Lin, H. Yang, J. Lan, C.-W. Nan, X. Xiao, J. He, Am. Ceram. Soc. 92, 2776 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    S. Sahoo, J. Adv. Ceram. 7, 99 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    R. Nathan Katz, Advanced Ceramics: NTC Thermistors [Online] (2001)

  6. 6.

    Thermistor application notes, NTC Thermistor Theory. [Online].Error! Hyperlink reference not valid., Finland

  7. 7.

    V.D. Maric, M.D. Lukovic, L.D. Zivanov, O.S. Aleksic, A.B. Menicanin, IEEE Trans. Instrum. Meas. 57, 2568 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    NTC thermistor design guide for discrete components & probes, Quality thermistor Inc, USA

  9. 9.

    E.A. de Vasconcelos, S.A. Khan, W.Y. Zhang, H. Uchida, T. Katsube, Sens. Actuator A 83, 167 (2000)

    Article  Google Scholar 

  10. 10.

    Temperature sensor for health, science & industry, Cornerstone sensor, USA

  11. 11.

    Thermistor application note, Measurment specialities, Temperature product group, USA

  12. 12.

    V. Maric, M. Lukovic, L. Zivanov, O. Aleksic, A. Menicanin, Instrum. Meas. Technol. IEEE 57, 11 (2006)

    Google Scholar 

  13. 13.

    Y. Cong, Z. Wang-Chao, S. Bin, Z. Hang-Xia, Comput. Sci. Netw. Technol. IEEE 2011(4), 2209–2213 (2011)

    Google Scholar 

  14. 14.

    J.S. Steinhart, S.R. Hart, Calibration curves for thermistors. Deep Sea Res. Oceanogr. Abstr. 15, 497–503 (1968)

    Article  Google Scholar 

  15. 15.

    E. Gaffet, M. Abdellaoui, N. Malhouroux-Gaffet, Mater. Trans., JIM 36, 198 (1995)

    CAS  Article  Google Scholar 

  16. 16.

    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    CAS  Article  Google Scholar 

  17. 17.

    S. Sahoo et al., J. Adv. Ceram. 3, 117 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    S. Sahoo et al., J. Adv. Ceram. 2, 291 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    C.L. Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang. C.R. Zhou, Intell. Comput. Integr. Syst. IEEE 445 (2010)

  20. 20.

    K.A. Stella, K. Krishnankutty, Phys. Technol. Sens. (ISPTS) IEEE 301, 301–304 (2012)

    Google Scholar 

  21. 21.

    BetaTHERM Sensors Temperature solutions, NTC Thermistor theory, Finland, 1–21

  22. 22.

    I. Brunets, O. Mrooz, O. Shpotyuk, H. Altenburg, in 24th International Conference on Microelectronics, Serbia, IEEE, vol 2, 503–506 (2004)

  23. 23.

    G.M. Gouda, C.L. Nagendra, Phys. Technol. Sens. IEEE 125 (2012)

  24. 24.

    C.H.M. Murtry, W.T. Terrell, W.T. Benecki, IEEE Trans. Ind. Appl. 2, 461–464 (1966)

    Article  Google Scholar 

  25. 25.

    C.L. Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang, C.R. Zhou, Bull. Mater. Sci. 35, 425 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    K. Park, D.Y. Bang, J.G. Kim, J.Y. Kim, C.H. Lee, B.H. Choi, J. Korean Phys. Soc. 41, 251 (2002)

    CAS  Google Scholar 

  27. 27.

    E.A. de Vasconcelos, S.A. Khan, W.Y. Zahang, H. Uchida, T. Katsube, Sens. Actuators, A 83, 167 (2000)

    Article  Google Scholar 

  28. 28.

    C. Yuan, X. Liu, M. Liang, C. Zhou, H. Wang, Sens. Actuators, A 167, 291 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    Z.P. Nenova, T.G. Nenova, IEEE Trans. Instrum. Meas. 58, 441 (2009)

    Article  Google Scholar 

  30. 30.

    R.N. Jadhav, S.N. Mathad, V. Puri, Ceram. Int. 38, 5181 (2012)

    CAS  Article  Google Scholar 

  31. 31.

    G.M. Gouda, C.L. Nagendra, Sens. Actuators, A 155, 263 (2009)

    CAS  Article  Google Scholar 

  32. 32.

    T.K. Roy, D. Sanyal, D. Bhowmick, A. Chakrabarti, Mater. Sci. Semicond. Process. 16, 332 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    C.C. Wang, S.A. Akbar, W. Chen, J.R. Schorr, Sens. Actuator A 58, 237 (1997)

    CAS  Article  Google Scholar 

  34. 34.

    YUKUTO NTC Thermistor, JOYIN, Taiwan

  35. 35.

    P. Padmini, N.S. Hari, T.R.N. Kutty, Sens. Actuators, A 50(1–2), 39–44 (1995)

    CAS  Article  Google Scholar 

  36. 36.

    NTC thermistors, KEYSTONE thermometrics corporation, USA

  37. 37.

    T. Nagai, M. Itoh, IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)

    CAS  Article  Google Scholar 

  38. 38.

    O. Aleksic, B. Radojcic, R. Ramovic, in 25th International Conference on Microelectronics, Balgrade, Serbia, IEEE, vol 580. (2006)

  39. 39.

    Intoduction to NTCs: NTC Thermistor, Philips Components, California

  40. 40.

    S.G.E. Wissmar, M. Kolahdouz, Y. Yamamoto, B. Tillack, C. Vieder, J.Y. Andersson, H.H. Radamsson, in International Semiconductor Device Research Symposium, vol. 1 (IEEE, College Park, MD, USA 2007).

    Google Scholar 

  41. 41.

    S. Jagtap, S. Rana, U. Mulik, D. Amalanekar, Microelectron. Int. 24, 7 (2007)

    Article  Google Scholar 

  42. 42.

    W.L. Brogan, Modern Control Theory (Pearson Education, London, 1974)

    Google Scholar 

  43. 43.

    I.J. Nagrath, Control System Engineering (New Age International, New Delhi, 2006)

    Google Scholar 

  44. 44.

    N.S. Nise, Control System Engineering (Wiley, Hoboken, 2004)

    Google Scholar 

  45. 45.

    K. Ogata, Modern Control Engineering (Prentice Hall, Upper Saddle River, 2010)

    Google Scholar 

  46. 46.

    E.D. Boalt, in Proceeding of the 11th WSEAS International Conference on Systems, vol 424. (2007)

  47. 47.

    N.T.C. Thermistors, General Technical Information (EPCOS, Munich, 2009)

    Google Scholar 

  48. 48.

    Thermistors in single supply temperature sensing circuits, Microchip Technology Inc. (1999)

Download references

Author information



Corresponding author

Correspondence to Subhanarayan Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S. CuO Modified CaTiO3 for NTCR Thermistor Application. Trans. Electr. Electron. Mater. (2020).

Download citation


  • Electrical resistance
  • NTCR thermistor
  • Sensitivity
  • Time response