Synthesis and Characterization of Polymer Blend-CoFe2O4 Nanoparticles as a Humidity Sensors for Different Temperatures

  • Ahmed HashimEmail author
  • Majeed Ali Habeeb
Regular Paper


In this paper, preparation of [carboxyl methyl cellulose (CMC)–polyvinyl pyrrolidone (PVP)–cobalt iron oxides nanoparticles (CoFe2O4)] nanocomposites for humidity sensors at different temperatures have been investigated. The synthesized humidity sensors have low cost, lightweight, flexible, high corrosion resistance, high sensitivity compare with other sensors. The structural and optical properties of nanocomposites have been studied. The experimental results of optical properties showed that the absorbance, absorption coefficient of (CMC–PVP) blend increase while the transmittance and energy band gap decrease with increase in CoFe2O4 nanoparticles concentrations. The results of humidity sensors showed that the electrical resistance of (CMC–PVP–CoFe2O4) nanocomposites decreases with an increase in CoFe2O4 nanoparticles concentrations and temperature. The (CMC–PVP–CoFe2O4) nanocomposites have high sensitivity for humidity for different temperatures.


Cobalt iron Nanocomposites Sensors Optical properties Polymer blend 


  1. 1.
    H. Abbasian, D. Ghanbari, G. Nabiyouni, Sonochemical-assisted synthesis of copper oxide nanoparticles and its application as humidity sensor. J. Nanostruct. 3, 429 (2013)Google Scholar
  2. 2.
    A.M. Abdelghany, E.M. Abdelrazek, D.S. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 302 (2014)CrossRefGoogle Scholar
  3. 3.
    A.M. Youssef, I.E. El-nagar, A.M.M. El-Torky, A.A. Abd El-Hakim, Development and characterization of CMC/PVA films loaded with ZnO-nanoparticles for antimicrobial packaging application. Der Pharma Chem. 9(9), 157 (2017)Google Scholar
  4. 4.
    N.K. Abbas, M.A. Habeeb, A.J.K. Algidsawi, Preparation of chloro penta amine cobalt(III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Int. J. Polym. Sci. 2015, 10 (2015). (Article ID 926789) CrossRefGoogle Scholar
  5. 5.
    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28(4), 1394–1401 (2018)CrossRefGoogle Scholar
  6. 6.
    I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA–PEG–PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62(11), 978 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA–PEG–CMC–Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens Lett 15(12), 998 (2017)CrossRefGoogle Scholar
  10. 10.
    A.M. Abdelghany, E.M. Abdelrazek, D. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite. J Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 302–308 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Hegazy, M. Eid, M. Madani, Effect of Ni nano particles on thermal, optical and electrical behaviour of irradiated PVA/AAc films. Arab. J. Nucl. Sci. Appl. 47(1), 41–52 (2014)Google Scholar
  12. 12.
    A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol—starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15(9), 758–761 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci. Mater. Electron. 29(12), 10369–10394 (2018)CrossRefGoogle Scholar
  14. 14.
    I.S. Yakubu, U. Muhammad, A.M. A’isha, Humidity sensing study of polyaniline/copper oxide nanocomposites. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 4(5), 49 (2018)Google Scholar
  15. 15.
    T. Li, X. Dong, C.C. Chan, K. Ni, S. Zhang, P.P. Shum, Humidity sensor with a PVA-coated photonic crystal fiber interferometer. IEEE Sens. J. 13(6), 2214 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Srivastava, Effect of poly ethylene glycol on moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)Google Scholar
  17. 17.
    M. Joshi, R.P. Singh, Cross linking polymers (PVA & PEG) with TiO2 nanoparticles for humidity sensing. Sens. Transducers J. 110(11), 105–111 (2009)Google Scholar
  18. 18.
    T. Seider, J. Martin, A. Boeddicker, J. Rühling, D. Wett, D. Nestler, G. Wagner, A.C. Huebler, T. Otto, T. Gessner, Highly-sensitive humidity sensors for condition monitoring of hybrid laminates. Mater. Sci. Forum 825–826, 579–585 (2015)CrossRefGoogle Scholar
  19. 19.
    N.K. Pandey, A. Panwar, S.K. Misra, Application of V2O5–ZnO nanocomposite for humidity sensing studies. Int. J. Mater. Sci. Appl. 6(3), 119–125 (2017)Google Scholar
  20. 20.
    B.C. Yadav, A.K. Srivastava, P. Sharma, Resistance based humidity sensing properties of TiO2. Sens. Transducers J. 81(7), 1348 (2007)Google Scholar
  21. 21.
    B.C. Yadav, R. Kumar, R. Kumar, S. Chaudhuri, P. Pramanik, Electrical behaviour of chitosan–silver nanocomposite in presence of water vapour. J. Water Environ. Nanotechnol. 2(2), 71–79 (2017)Google Scholar
  22. 22.
    B.C. Yadav, S. Sikarwar, A. Bhaduri, P. Kumar, Synthesis, characterization and development of opto-electronic humidity sensor using copper oxide thin film. Int. Adv. Res. J. Sci. Eng. Technol. 2(11), 25 (2015)Google Scholar
  23. 23.
    B. Deshkulkarni, L.R. Viannie, S.V. Ganachari, N.R. Banapurmath, A. Shettar, Humidity sensing using polyaniline/polyvinyl alcohol nanocomposite blend. IOP Conf. Ser. Mater. Sci. Eng. 376, 012063 (2018)CrossRefGoogle Scholar
  24. 24.
    R. Kumar, B.C. Yadav, Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method. Mater. Lett. 167, 300–302 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Hashim, M.A. Habeeb, Structural and optical properties of (biopolymer blend-metal oxide) bionanocomposites for humidity sensors. J. Bionanosci. 12(5), 1 (2018)Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure SciencesUniversity of BabylonHillahIraq

Personalised recommendations