Skip to main content
Log in

Effect of Atomic Layer Deposited AlN Layer on Pt/4H-SiC Schottky Diodes

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Thin AlN layer was deposited on n-type 4H-SiC using atomic layer deposition and the electrical properties of Pt/SiC Schottky diodes with and without AlN layer were comparatively investigated. Based on the capacitance–voltage (CV) and conductance–voltage (G/ωV) characteristics, the interface state density decreased but the oxide trap density increased with an AlN layer. The border traps present near the AlN/SiC interface might produce such difference. Compared to the sample without AlN, both the barrier height and the ideality factor increased with an AlN. Analyses on the reverse leakage current density for Pt/AlN/SiC junction showed that the dominant transport mechanisms are ohmic conduction, trap assisted tunneling (TAT) and Fowler–Nordheim emissions at low, intermediate, and high electric field regions, respectively. Both the nitrogen vacancies and dangling bonds in Al in AlN layer were suggested to contribute to the TAT conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Wu, J. Appl. Phys. 106, 011101 (2009)

    Article  Google Scholar 

  2. S. Sadeghpour, F. Ceyssens, R. Puers, J. Phys. Conf. Ser. 757, 012003 (2016)

    Article  Google Scholar 

  3. G. Banal, M. Funato, Y. Kawakami, Appl. Phys. Lett. 92, 241905 (2008)

    Article  Google Scholar 

  4. M. Alevli, C. Ozgit, I. Donmez, N. Biyikli, J. Cryst. Growth 335, 51 (2011)

    Article  Google Scholar 

  5. M. Bosund, P. Mattila, A. Aierken, T. Hakkarainen, H. Koskenvaara, M. Sopanen, V. Airaksinen, H. Lipsanen, Appl. Surf. Sci. 256, 7434 (2010)

    Article  Google Scholar 

  6. H. Shih, W. Lee, W. Kao, Y. Chuang, R. Lin, H. Lin, M. Shiojiri, M. Chen, Sci. Rep. 7, 39717 (2017)

    Article  Google Scholar 

  7. G. Liu, E. Deguns, L. Lecordier, G. Sundaram, J. Becker, ECS Trans. 41, 219 (2011)

    Article  Google Scholar 

  8. O. Kim, D. Kim, T. Anderson, J. Vac. Sci. Technol. A 27, 923 (2009)

    Article  Google Scholar 

  9. J. Casady, R. Johnson, Solid State Electron. 39, 1409 (1996)

    Article  Google Scholar 

  10. M. Yoder, IEEE Trans. Electron. Devices 43, 1633 (1996)

    Article  Google Scholar 

  11. I. Shalish, C. de Oliveira, Y. Shapira, L. Burstein, M. Eizenberg, J. Appl. Phys. 88, 5724 (2000)

    Article  Google Scholar 

  12. S. Huang, Q. Jiang, S. Yang, Z. Tang, K. Chen, IEEE Electron Device Lett. 34, 193 (2013)

    Article  Google Scholar 

  13. D. Cao, X. Cheng, Y. Xie, L. Zheng, Z. Wang, X. Yu, J. Wang, D. Shen, Y. Yu, RSC Adv. 5, 37881 (2015)

    Article  Google Scholar 

  14. P. Mattila, M. Bosund, T. Huhtio, H. Lipsanen, M. Sopanen, J. Appl. Phys. 111, 063511 (2012)

    Article  Google Scholar 

  15. T. Mandel, M. Frischolz, R. Helbig, S. Birkle, A. Hammerschimdt, Appl. Surf. Sci. 65–66, 795 (1993)

    Article  Google Scholar 

  16. E. Nicollian, J. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  17. K. Cheong, S. Dimitrijev, IEEE Electron Device Lett. 23, 404 (2002)

    Article  Google Scholar 

  18. J. Campi, Y. Shi, Y. Luo, F. Yan, J. Zhao, IEEE Trans. Electron Devices 46, 511 (1999)

    Article  Google Scholar 

  19. T. Hossain, D. Wei, J. Edgar, N. Garces, N. Nepal, J. Hite, M. Mastro, C. Eddy Jr., J. Vac. Sci. Technol. B 33, 061201 (2015)

    Article  Google Scholar 

  20. Y. Shi, Q. Zhou, A. Zhang, L. Zhu, Y. Shi, W. Chen, Z. Li, B. Zhang, Nanoscale Res. Lett. 12, 342 (2017)

    Article  Google Scholar 

  21. N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Mater. Sci. Semicond. Process. 74, 1 (2018)

    Article  Google Scholar 

  22. H. Yoshioka, T. Nakamura, T. Kimoto, J. Appl. Phys. 111, 014502 (2012)

    Article  Google Scholar 

  23. P. Fiorenza, G. Greco, F. Iucolano, A. Patti, F. Roccaforte, Appl. Phys. Lett. 106, 142903 (2015)

    Article  Google Scholar 

  24. H. Altuntas, C. Ozgi-Akgun, I. Donmez, N. Biyikli, J. Appl. Phys. 117, 155101 (2015)

    Article  Google Scholar 

  25. D. Cociorva, W. Aulbur, J. Wilkins, Solid State Commun. 124, 63 (2002)

    Article  Google Scholar 

  26. J. Choi, R. Puthenkovilakam, J. Chang, Appl. Phys. Lett. 86, 192101 (2005)

    Article  Google Scholar 

  27. T. Apostolova, D. Huang, P. Alsing, D. Cardimona, Phys. Rev. A 71, 013810 (2005)

    Article  Google Scholar 

  28. V. Ligatchev, Rusli, Z. Pan, Appl. Phys. Lett. 87, 242903 (2005)

    Article  Google Scholar 

  29. T. Tansley, R. Egan, Phys. Rev. B 45, 10942 (1992)

    Article  Google Scholar 

  30. C. Wu, A. Kahn, Appl. Phys. Lett. 74, 546 (1999)

    Article  Google Scholar 

  31. M. Gronera, J. Elama, F. Fabreguettea, S. Georgea, Thin Solid Films 413, 186 (2002)

    Article  Google Scholar 

  32. V. Afanasev, F. Ciobanu, S. Dimitrijev, G. Pensl, A. Stesmans, J. Phys. Condens. Matter 16, S1839 (2004)

    Article  Google Scholar 

  33. M. Avice, U. Grossner, I. Pintilie, B. Svensson, O. Nilsen, H. Fjellvag, Appl. Phys. Lett. 89, 222103 (2006)

    Article  Google Scholar 

  34. M. Usman, A. Hallén, T. Pilvi, A. Schöner, M. Leskeläb, J. Electrochem. Soc. 158, H75 (2011)

    Article  Google Scholar 

  35. S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, B. Shen, K. Chen, Appl. Phys. Lett. 106, 051605 (2015)

    Article  Google Scholar 

  36. K. Kim, M. Hu, D. Liu, J. Kim, K. Chen, Z. Ma, Nano Energy 43, 259 (2018)

    Article  Google Scholar 

  37. R. Khosa, E. Thorsteinsson, M. Winters, N. Rorsman, R. Karhu, J. Hassan, E. Sveinbjörnsson, AIP Adv. 8, 025304 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Program funded by the Seoul National University of Science and Technology(Seoultech).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hogyoung Kim or Byung Joon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, N.D., An, S.C. et al. Effect of Atomic Layer Deposited AlN Layer on Pt/4H-SiC Schottky Diodes. Trans. Electr. Electron. Mater. 19, 235–240 (2018). https://doi.org/10.1007/s42341-018-0058-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0058-0

Keywords

Navigation