Thermoelectric Properties of Mn-Doped FeVSb Half-Heusler System Synthesized via Mechanical Alloying

  • Rahidul Hasan
  • Soon-Chul Ur
Regular Paper


Mn-doped FeVSb half-Heusler alloys were synthesized via a mechanical alloying process and consolidated by vacuum hot pressing. The microstructure and phase transformation of all the samples were examined by XRD and SEM. Thermoelectric properties such as the Seebeck coefficient, electrical conductivity and thermal conductivity were investigated in the moderate temperature range from 300 to 973 K. The negative value of both the Seebeck and Hall coefficients confirms the presence of n-type conductivity. The Seebeck coefficient increased with an increasing doping amount, but the electrical conductivity decreased, owing to decreasing carrier concentration. The thermal conductivity found in this experiment was quite high, possibly due to bipolar diffusion of the electronic band energy. The maximum value of the dimensionless figure of merit was achieved using a relatively high value of the Seebeck coefficient and a significantly higher value of electrical conductivity. The maximum value of ZT was observed for Fe0.996Mn0.004VSb at 468 K.


Seebeck coefficient Mechanical alloying Half-Heusler Doping 



This work is supported by the Regional Innovation Center (RIC) Program, which was conducted by the Ministry of SMEs and Startups of the Korean Government.


  1. 1.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  2. 2.
    J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)CrossRefGoogle Scholar
  3. 3.
    S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, J. Blumm, Appl. Phys. Lett. 88, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, T.M. Tritt, Nanomaterials 2, 379 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Uher, J. Yang, S. Hu, D.T. Morelli, G.P. Meisner, Phys. Rev. B 59, 8615 (1999)CrossRefGoogle Scholar
  6. 6.
    H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, E. Bucher, J. Phys. Cond. Matter 11, 1697 (1999)CrossRefGoogle Scholar
  7. 7.
    S. Bhattacharya, A.L. Pope, R.T. Littleton, T.M. Tritt, V. Ponnabalam, Y. Xia, S.J. Poon, Appl. Phys. Lett. 77, 2476 (2000)CrossRefGoogle Scholar
  8. 8.
    Q. Shen, L. Chen, T. Hiraj, J. Yang, G.P. Meisner, C. Uher, Appl. Phys. Lett. 79, 4165 (2005)CrossRefGoogle Scholar
  9. 9.
    S. Sakurada, N. Shutoh, Appl. Phys. Lett. 86, 1 (2005)CrossRefGoogle Scholar
  10. 10.
    O. Appel, Y. Gelbstein, J. Electr. Mater. 43, 1976 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, H. Weller, Adv. Funct. Mater. 19, 3476 (2009)CrossRefGoogle Scholar
  12. 12.
    Y. Gelbstein, Y. Rosenberg, Y. Sadia, M. Dariel, J. Phys. Chem. C 114, 13126 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, Adv. Funct. Mater. 18, 2880 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Chen, Z. Ren, Mater. Today 16, 387 (2013)CrossRefGoogle Scholar
  15. 15.
    S.-C. Ur, H. Choo, D.B. Lee, P. Nash, Met. Mater. Int. 6, 435 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Blair, T.L. Stevens, Steel Castings Handbook, 6th edn. (ASM International, Metal Parks, 1995), p. 16Google Scholar
  17. 17.
    E.P. Degarmo, J.T. Black, R.A. Kohse, Materials and Processes in Manufacturing, 9th edn. (Prentice Hall, Upper Saddle River, 2003), p. 107Google Scholar
  18. 18.
    I.-H. Kim, J.-C. Kweon, Y.-G. Lee, M.-S. Yoon, S.-L. Ryu, W.-G. Kim, S.-C. Ur, J. Alloys Compd. 658, 33 (2010)Google Scholar
  19. 19.
    E. Yuasa, T. Morooka, M. Tsunoda, J. Mishima, J. Jpn. Soc. Powder Powder Metall. 42, 171 (1995)CrossRefGoogle Scholar
  20. 20.
    Y. Luo, G. Ran, N. Chen, Q. Shen, Y. Zhang, Materials 9, 1 (2016)Google Scholar
  21. 21.
    P. Jozwik, Z. Bojar, J. Met. Mater. 52, 321 (2007)Google Scholar
  22. 22.
    R. Grasin, E. Vinteler, A. Bezergheanu, C. Rusu, R. Pacurariu, I.G. Deac, R. Tetean, Acta Phys. Pol. A 118, 648 (2010)CrossRefGoogle Scholar
  23. 23.
    X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, Z. Ren, Energy Environ. Sci. 5, 7543 (2012)CrossRefGoogle Scholar
  24. 24.
    D.P. Young, P. Khalifah, R.J. Cava, A.P. Ramirez, J. Appl. Phys. 87, 317 (2000)CrossRefGoogle Scholar
  25. 25.
    D.T. Morelli, G.A. Slack, High Thermal Conductivity Materials, ed. by S.L. Shindé, J.S. Goela (Springer, New York, 2006), pp. 37–68Google Scholar
  26. 26.
    C.F. Gallo, R.C. Miller, P.H. Sutter, R.W. Ure, J. Appl. Phys. 33, 3144 (1962)CrossRefGoogle Scholar
  27. 27.
    B.I. Davydov, I.M. Shmushkevich, Uspekhi Fiz. Nauk 24, 21 (1940)CrossRefGoogle Scholar
  28. 28.
    P.J. Price, Phys. Rev. 95, 596 (1954)Google Scholar
  29. 29.
    J. Tauc, Czech. J. Phys. 6, 108 (1956)CrossRefGoogle Scholar
  30. 30.
    J.R. Drabble, H.J. Goldsmid, Thermal Conduction in Semiconductors (Pergamon press, Oxford, 1961), p. 235Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM)Korea National University of TransportationChungjuRepublic of Korea

Personalised recommendations